Int J Mol Sci. 2025 Apr 21;26(8):3918. doi: 10.3390/ijms26083918.
ABSTRACT
Gaucher disease is an autosomal recessive disorder caused by dysfunction of the enzyme glucocerebrosidase. The enzyme deficiency is mainly due to mutations in the GBA1 gene, and it is responsible for the accumulation of glucosylceramide within the lysosomes of monocyte macrophage-derived cells; causing the associated symptomatology. In this paper, we describe six new mutations identified in the GBA1 gene, which, in combination with other mutations already documented, lead to absent or reduced glucocerebrosidase activity, resulting in pathological accumulation of the specific substrate and the clinical manifestations associated with Gaucher disease. We have identified three mutations (c.1578_1581dup, c.1308dup, and Y492X) that determine the formation of a premature stop codon in the translation process and three missense mutations (C342F, M280L, and Q247R) that lead to amino acid changes in proteins, resulting in decreased glucocerebrosidase activity. These mutations were never observed in our group of healthy control subjects > 1500 individuals. The patients examined had several clinical manifestations, which included hepatosplenomegaly and bone and hematologic involvement; considering the absence of enzyme activity, this suggests that the new mutations described here are associated with type I Gaucher disease. The identification of new mutations in patients with symptoms referable to Gaucher disease increases the molecular knowledge related to the GBA1 gene and offers to clinicians significant support for the accurate diagnosis of the pathology.
PMID:40332757 | DOI:10.3390/ijms26083918
AI-Assisted Evidence Search
Share Evidence Blueprint
Search Google Scholar