Aging Cell. 2025 May 12:e70096. doi: 10.1111/acel.70096. Online ahead of print.
ABSTRACT
Sex differences in Parkinson’s disease (PD) offer insights into mechanisms of dopaminergic cell resilience. Female dopamine (DA) neurons are more resilient via mechanisms that remain unclear. Here, we discovered key sex and regional differences in mitochondrial generation of cytotoxic reactive oxygen species (ROS) and their implications for DA neuron resilience using the Drosophila model. While aging raised mitochondrial ROS in DA neurons of both sexes, we observed a sexually dimorphic response in the paraquat (PQ) PD model. DA neuron knockdown of the Drosophila vesicular glutamate transporter (dVGLUT) increased mitochondrial ROS only in males, leaving females protected. Cell depolarization, a physiological stressor, similarly raised mitochondrial ROS in DA neurons selectively in males following dVGLUT knockdown. We also identified dVGLUT-dependent changes in intracellular ATP in both sexes. Overall, we discovered sexually dimorphic relationships between dVGLUT, ATP synthesis, and ROS generation in DA neurons, providing a mechanistic basis for DA neuron resilience.
PMID:40354193 | DOI:10.1111/acel.70096
AI-Assisted Evidence Search
Share Evidence Blueprint
Search Google Scholar