Cell Rep. 2025 May 21;44(6):115743. doi: 10.1016/j.celrep.2025.115743. Online ahead of print.
ABSTRACT
An acute increase in excitatory synaptic transmission contributes to the rapid antidepressant actions of neuroplastogens, including ketamine and its bioactive metabolite, (2R,6R)-hydroxynorketamine (HNK). It is hypothesized that drug-induced metaplastic changes in synaptic strength account for therapeutically relevant behavioral adaptations in vivo. Using the plasticity-deficient Wistar Kyoto model of treatment-resistant depression, we demonstrate that (2R,6R)-HNK potentiates glutamatergic transmission, promotes synaptic strength, restores long-term potentiation (LTP), and reverses deficits in hippocampal-dependent synaptic activity and behavior. (2R,6R)-HNK selectively potentiated CA1 pyramidal neuron activity during novelty exploration and restored Schaffer collateral-dependent spatial recognition memory. Prior experience with spatial learning partially occluded LTP in control rats, an effect mimicked in LTP-impaired rats in which spatial learning deficits were reversed by (2R,6R)-HNK. These findings demonstrate that (2R,6R)-HNK exerts rapid neuroplastogenic effects in vivo, which improve cognitive function and promote adaptive changes in synaptic strength at functionally impaired synapses.
PMID:40408248 | DOI:10.1016/j.celrep.2025.115743
AI-Assisted Evidence Search
Share Evidence Blueprint
Search Google Scholar