Welcome to Psychiatryai.com: Latest Evidence - RAISR4D

Effects of Subanesthetic Intravenous Ketamine Infusion on Stress Hormones and Synaptic Density in Rats with Mild Closed-Head Injury

Biomedicines. 2025 Mar 24;13(4):787. doi: 10.3390/biomedicines13040787.

ABSTRACT

Background: Every year, over 40 million people sustain mild traumatic brain injury (mTBI) which affects the glucocorticoid stress pathway and synaptic plasticity. Ketamine, a multimodal dissociative anesthetic, modulates the stress pathway and synaptic plasticity. However, the effects of post-mTBI ketamine administration on plasma stress hormones and brain synaptic plasticity are largely unknown. Methods: Adult male Sprague-Dawley rats with indwelling jugular venous catheters sustained mTBI with the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) in a single session (3 impacts × 1.5 J). One hour later, rats received intravenous (IV) ketamine (0, 10, or 20 mg/kg, 2 h). Catheter blood samples were collected for plasma corticosterone and progesterone assays. Brain tissue sections were double-labeled for presynaptic synapsin-1 and postsynaptic density protein 95 (PSD-95). Utilizing the Synaptic Evaluation and Quantification by Imaging Nanostructure (SEQUIN) workflow, super-resolution confocal images were generated, and synapsin-1, PSD-95, and synaptic density were quantified in the CA1 of the hippocampus and medial prefrontal cortex (mPFC). Results: IV ketamine infusion produced biphasic effects on corticosterone levels: a robust elevation during the infusion followed by a reduction after the infusion. CHIMERA injury elevated progesterone levels at post-injury day (PID)-1 and reduced synaptic density in the CA1 at PID-4, regardless of ketamine infusion. Ketamine infusion increased synaptic density in the mPFC at PID-4. Conclusions: Mild TBI and IV ketamine modulate the stress pathway and synaptic plasticity in the brain. Further research is warranted to investigate the functional outcomes of subanesthetic doses of ketamine on stress pathways and neuroplasticity following mTBI.

PMID:40299391 | DOI:10.3390/biomedicines13040787

Document this CPD

AI-assisted Evidence Research

Share Evidence Blueprint

QR Code

Search Google Scholar

close chatgpt icon
ChatGPT

Enter your request.

Psychiatry AI: Real-Time AI Scoping Review (RAISR4D)