Brain Commun. 2025 Apr 8;7(2):fcaf135. doi: 10.1093/braincomms/fcaf135. eCollection 2025.
ABSTRACT
Prospective memory, or memory for future intentions, engages particular cortical regions. Lesion studies also implicate the thalamus, with prospective memory deterioration following thalamic stroke. Neuroimaging, anatomical and lesion studies suggest the anterior nuclei of the thalamus (ANT), in particular, are involved in episodic memory, with electrophysiological studies suggesting an active role in selecting neural assemblies underlying particular memory traces. Here, we hypothesized that the ANT are engaged in realizing prospectively-encoded intentions, detectable using ultra-high-field strength functional MRI. Using a within-subject design, participants (N = 14; age 20-35 years) performed an ongoing n-back working memory task with two cognitive loads, each with and without a prospective memory component, during 7-Tesla functional MRI. Seed-to-voxel whole brain functional connectivity analyses were performed to establish whether including a prospective memory component in an ongoing task results in greater connectivity between ANT and cortical regions engaged in prospective memory. Repeated measures ANOVAs were applied to behavioral and connectivity measures, with the factors Task Type (with prospective memory or not) and N-Back (2-back or 3-back). Response accuracy was greater and reaction times faster without the prospective memory component, and accuracy was higher in the 2- than 3-back condition. Task Type had a main effect on connectivity with an ANT seed, with greater ANT-DLPFC and ANT-STG connectivity when including a prospective memory component. Post hoc testing based on a significant interaction showed greater ANT-DLPFC connectivity (p-FWE = 0.007) when prospective memory was included with the low cognitive load and ANT-STG connectivity (p-FWE = 0.019) with the high cognitive load ongoing task. Direct comparison showed greater functional connectivity between these areas and the ANT than dorsomedial nucleus of the thalamus (DMNT) during prospective remembering. Enhanced ANT-DLPFC connectivity, a brain region with an established role in strategic monitoring for prospective memory cues, arose with a low cognitive load ongoing task that enabled monitoring. This connectivity was significantly less on direct comparison with increasing the cognitive load of the ongoing task without prospective memory, suggesting specificity for prospective memory. Greater ANT-STG connectivity on prospective memory inclusion in the higher cognitive load ongoing task fits with reported STG activation on prospective memory through spontaneous retrieval. Lower connectivity on direct comparison with a DMNT seed suggests ANT specificity. The findings fit with a coordinating role for the ANT in prospective remembering. Given the small sample, these findings should be considered preliminary, with replication required.
PMID:40276704 | PMC:PMC12018800 | DOI:10.1093/braincomms/fcaf135
AI-assisted Evidence Research
Share Evidence Blueprint