PLoS Biol. 2025 Apr 30;23(4):e3003149. doi: 10.1371/journal.pbio.3003149. Online ahead of print.
ABSTRACT
A critical step before data-sharing of human neuroimaging is removing facial features to protect individuals’ privacy. However, not only does this process redact identifiable information about individuals, but it also removes non-identifiable information. This introduces undesired variability into downstream analysis and interpretation. This registered report investigated the degree to which the so-called defacing altered the quality assessment of T1-weighted images of the human brain from the openly available “IXI dataset”. The effect of defacing on manual quality assessment was investigated on a single-site subset of the dataset (N = 185). By comparing two linear mixed-effects models, we determined that four trained human raters’ perception of quality was significantly influenced by defacing by modeling their ratings on the same set of images in two conditions: “nondefaced” (i.e., preserving facial features) and “defaced”. In addition, we investigated these biases on automated quality assessments by applying repeated-measures, multivariate ANOVA (rm-MANOVA) on the image quality metrics extracted with MRIQC on the full IXI dataset (N = 581; three acquisition sites). This study found that defacing altered the quality assessments by humans and showed that MRIQC’s quality metrics were mostly insensitive to defacing.
PMID:40305522 | DOI:10.1371/journal.pbio.3003149
AI-Assisted Evidence Search
Share Evidence Blueprint
Search Google Scholar