Welcome to Psychiatryai.com: Latest Evidence - RAISR4D

The role of astrocytes in attention-deficit hyperactivity disorder: An update

Psychiatry Res. 2025 May 20;350:116558. doi: 10.1016/j.psychres.2025.116558. Online ahead of print.

ABSTRACT

Attention-deficit hyperactivity disorder (ADHD), the most prevalent neurodevelopmental disorder, is characterized by inattention, hyperactivity, and impulsivity, manifesting in distinct symptoms and varying degrees of severity among patients. While the cellular processes underlying the neurobiology of ADHD are still being explored, in vitro studies suggest the involvement of certain cellular pathways in its clinical manifestations. Neurodevelopmental disorders such as ADHD are caused by malfunctions in numerous cells in the central nervous system (CNS) throughout development; nevertheless, most of the research focuses on neuronal dysfunction. In the last decade, it has become evident that glia and astrocytes play a crucial role in neurodevelopmental processes, which, if deficient, may result in neurodevelopmental disorders. Besides contributing to homeostatic maintenance of the blood-brain barrier (BBB) and other glial cell types, astrocytes provide neurons with structural, trophic, and metabolic support, which is indispensable for their proper functionality. Emerging evidence implicates that astrocytes are involved in processes associated with the etiopathology of ADHD, including oxidative stress, aberrant synaptic formation, neuroinflammation, and excitatory/inhibitory imbalance. This review will summarize the current knowledge addressing astrocyte dysfunction in ADHD, the remaining caveats in clinical data, and the possibilities for drug therapy. Findings substantiated by in vivo, in vitro, and genetic data will be provided, along with the impact of methylphenidate on astrocyte condition.

PMID:40424648 | DOI:10.1016/j.psychres.2025.116558

Document this CPD

AI-Assisted Evidence Search

Share Evidence Blueprint

QR Code

Search Google Scholar

close chatgpt icon
ChatGPT

Enter your request.

Psychiatry AI: Real-Time AI Scoping Review (RAISR4D)