Welcome to PsychiatryAI.com: [PubMed] - Psychiatry AI Latest

Alzheimer’s Disease

Knowledge-guided learning methods for integrative analysis of multi-omics data
Li W, Ballard J, Zhao Y and Long Q
Integrative analysis of multi-omics data has the potential to yield valuable and comprehensive insights into the molecular mechanisms underlying complex diseases such as cancer and Alzheimer's disease. However, a number of analytical challenges complicate multi-omics data integration. For instance, -omics data are usually high-dimensional, and sample sizes in multi-omics studies tend to be modest. Furthermore, when genes in an important pathway have relatively weak signal, it can be difficult to detect them individually. There is a growing body of literature on knowledge-guided learning methods that can address these challenges by incorporating biological knowledge such as functional genomics and functional proteomics into multi-omics data analysis. These methods have been shown to outperform their counterparts that do not utilize biological knowledge in tasks including prediction, feature selection, clustering, and dimension reduction. In this review, we survey recently developed methods and applications of knowledge-guided multi-omics data integration methods and discuss future research directions.
Design and Methods of the Early Age-Related Hearing Loss Investigation Randomized Controlled Trial
Denham MW, Arnold ML, Sanchez VA, Lin FR, Tucker LH, Gomez MC, Fernandez K, Arpi P, Neil H, Boyle S, Selevan S, Sussman TJ, Gmelin T, Fine I, Glynn NW, Teresi J, Noble JM, Goldberg T, Luchsinger JA and Golub JS
Hearing loss has been identified as a major modifiable risk factor for cognitive decline. The Early Age-Related Hearing Loss Investigation (EARHLI) study will assess the mechanisms linking early age-related hearing loss (ARHL) and cognitive impairment.
Polymeric nanoparticles: A promising strategy for treatment of Alzheimer's disease
Elmahboub YSM and Elkordy AA
Alzheimer's disease (AD), is characterised by two major hallmarks: the formation of extracellular β-amyloid (Aβ) plaques and the hyperphosphorylation of tau protein, thus leading to the formation of neurofibrillary tangles. These hallmarks cause synaptic loss, neuronal damage, and the development of neuroinflammation and oxidative stress, which promote AD progression. Thus, the goal of treating AD is eliminating these hallmarks, to prevent AD progression and decrease symptoms. However, current available therapies provide symptomatic relief rather than treating the underlying cause of the disease, because the restrictive nature of the blood brain barrier (BBB) impedes the entry of drugs, thereby affecting drug efficacy and bioavailability. Researchers are focusing on developing new therapeutic approaches to bypass the BBB, for achieving site-specific drug delivery with the highest possible bioavailability and the lowest adverse effects. Recently explored therapeutic strategies include use of biologic agents such as monoclonal antibodies. Aducanumab, a strong candidate for treating AD, has been granted accelerated Food and Drug Administration approval; however, safety concerns may hinder its future use. Thus, nanotechnological approaches have led to a new era of AD treatment. Nanoparticles (NPs), because of their small particle size, can cross the BBB, thus enhancing drug pharmacokinetic properties and enabling targeted drug delivery. Polymeric NPs have been extensively studied, because of their simple production, biodegradability, biocompatibility, and unique architecture. These NPs provide a flexible vesicle that can be easily tailored to achieve desired physicochemical features. In this review, various types of polymer-based-NPs are discussed, highlighting the properties of fabricated NPs, which have multiple benefits in AD treatment, including anti-amyloid, antioxidant, and anti-inflammatory effects.
Stem cell-based therapy for systemic lupus erythematous
Zare Moghaddam M, Mousavi MJ and Ghotloo S
Systemic lupus erythematosus (SLE), an autoimmune disease, is among the most prevalent rheumatic autoimmune disorders. It affects autologous connective tissues caused by the breakdown of self-tolerance mechanisms. During the last two decades, stem cell therapy has been increasingly considered as a therapeutic option in various diseases, including parkinson's disease, alzheimer, stroke, spinal cord injury, multiple sclerosis, inflammatory bowel disease, liver disease, diabete, heart disease, bone disease, renal disease, respiratory diseases, and hematological abnormalities such as anemia. This is due to the unique properties of stem cells that divide and differentiate to the specialized cells in the damaged tissues. Moreover, they impose immunomodulatory properties affecting the diseases caused by immunological abnormalities such as rheumatic autoimmune disorders. In the present manuscript, efficacy of stem cell therapy with two main types of stem cells, including mesenchymal stem cell (MSC), and hematopoietic stem cells (HSC) in animal models or human patients of SLE, has been reviewed. Taken together, MSC and HSC therapies improved the disease activity, and severity in kidney, lung, liver, and bone (improvement in the clinical manifestation). In addition, a change in the immunological parameters occurred (improvement in immunological parameters). The level of autoantibodies, including antinuclear antibody (ANA), and anti-double-stranded deoxyribonucleic acid antibodies (dsDNA Abs) reduced. A conversion of Th1/Th2 ratio (in favor of Th2), and Th17/Treg (in favor of Treg) was also detected. In spite of many advantages of MSC and HSC transplantations, including efficacy, safety, and increased survival rate of SLE patients, some complications, including recurrence of the disease, occurrence of infections, and secondary autoimmune diseases (SAD) were observed after transplantation that should be addressed in the next studies.
Multifunctional roles of γ-enolase in the central nervous system: more than a neuronal marker
Horvat S, Kos J and Pišlar A
Enolase, a multifunctional protein with diverse isoforms, has generally been recognized for its primary roles in glycolysis and gluconeogenesis. The shift in isoform expression from α-enolase to neuron-specific γ-enolase extends beyond its enzymatic role. Enolase is essential for neuronal survival, differentiation, and the maturation of neurons and glial cells in the central nervous system. Neuron-specific γ-enolase is a critical biomarker for neurodegenerative pathologies and neurological conditions, not only indicating disease but also participating in nerve cell formation and neuroprotection and exhibiting neurotrophic-like properties. These properties are precisely regulated by cysteine peptidase cathepsin X and scaffold protein γ-syntrophin. Our findings suggest that γ-enolase, specifically its C-terminal part, may offer neuroprotective benefits against neurotoxicity seen in Alzheimer's and Parkinson's disease. Furthermore, although the therapeutic potential of γ-enolase seems promising, the effectiveness of enolase inhibitors is under debate. This paper reviews the research on the roles of γ-enolase in the central nervous system, especially in pathophysiological events and the regulation of neurodegenerative diseases.
Using principal component analysis to determine which vestibular stimuli provide best biomarkers for separating Alzheimer's from mixed Alzheimer's disease
Marzban S, Dastgheib Z, Lithgow B and Moussavi Z
Alzheimer's disease (AD) is often mixed with cerebrovascular disease (AD-CVD). Heterogeneity of dementia etiology and the overlapping of neuropathological features of AD and AD-CVD make feature identification of the two challenging. Separation of AD from AD-CVD is important as the optimized treatment for each group may differ. Recent studies using vestibular responses recorded from electrovestibulography (EVestG™) have offered promising results for separating these two pathologies. An EVestG measurement records responses to several different physical stimuli (called tilts). In previous research, the number of EVestG features from different tilts was selected based on physiological intuition to classify AD from AD-CVD. As the number of potential characteristic features from all tilts can be very large, in this study, we used an algorithm based on principal component analysis (PCA) to rank the most effective vestibular stimuli for differentiating AD from AD-CVD. Analyses were performed on the EVestG signals of 28 individuals with AD and 24 with AD-CVD. The results of this study showed that tilts simulating the otolithic organs (utricle and saccule) generated the most characteristic features for separating AD from AD-CVD.
sAPPα Peptide Promotes Damaged Microglia to Clear Alzheimer's Amyloid-β via Restoring Mitochondrial Function
Tang Y, Wang Y, Gao Z, Li J, Zhang L, Shi H, Dong J, Song S and Qian C
Alzheimer's disease (AD) is an age-related neurodegenerative disease with amyloid-β (Aβ) deposition as the main pathological feature. It's an important challenge to find new ways to clear Aβ from Brain. The soluble amyloid precursor protein α (sAPPα) is a neuroprotective protein and can attenuate neuronal damage, including toxic Aβ. However, the regulatory role of sAPPα in non-neuronal cells, such as microglia, is less reported and controversial. Here, we showed that sAPPα promoted the phagocytosis and degradation of Aβ in both normal and damaged microglia. Moreover, the function of damaged microglia was improved by the sAPPα through normalizing mitochondrial function. Furthermore, the results of molecular docking simulation showed that sAPPα had a good affinity with Aβ. We preliminarily reveal that sAPPα is similar to antibodies and can participate in the regulation of microglia phagocytosis and degradation of Aβ after binding to Aβ. sAPPα is expected to be a mild and safe peptide drug or drug carrier for AD.
A Review of the Current Status of Disease-Modifying Therapies and Prevention of Alzheimer's Disease
Parums DV
Alzheimer's disease is the most common form of dementia and includes cognitive, personality, and behavioral changes. The 2024 report from the Alzheimer's Association estimated that 6.9 million adults >65 years in the US are currently living with Alzheimer's disease. Modeling studies predict that this number will double by 2050, and associated healthcare costs will reach $1 trillion. In June 2021, regulatory approval of aducanumab, a humanized recombinant monoclonal antibody to amyloid ß, initially raised expectations for improved disease-modifying therapy. However, in February 2024, production of aducanumab and a post-marketing clinical trial ceased in the US due to the costs and limitations of aducanumab therapy. In March 2024, biobank data identified significant modifiable risk factors for Alzheimer's disease, including diabetes mellitus, exposure to nitrogen dioxide (a proxy for air pollution), and the frequency of alcohol intake. Therefore, modification of identifiable risk factors, combined with testing for disease-susceptibility genes, could be the most effective approach to reduce the incidence. This article aims to review the current status of disease-modifying therapies and prevention of Alzheimer's disease.
Omics data classification using constitutive artificial neural network optimized with single candidate optimizer
Madhan S and Kalaiselvan A
Recent technical advancements enable omics-based biological study of molecules with very high throughput and low cost, such as genomic, proteomic, and microbionics'. To overcome this drawback, Omics Data Classification using Constitutive Artificial Neural Network Optimized with Single Candidate Optimizer (ODC-ZOA-CANN-SCO) is proposed in this manuscript. The input data is pre-processing by using Adaptive variational Bayesian filtering (AVBF) to replace missing values. The pre-processing data is fed to Zebra Optimization Algorithm (ZOA) for dimensionality reduction. Then, the Constitutive Artificial Neural Network (CANN) is employed to classify omics data. The weight parameter is optimized by Single Candidate Optimizer (SCO). The proposed ODC-ZOA-CANN-SCO method attains 25.36%, 21.04%, 22.18%, 26.90%, and 28.12% higher accuracy when analysed to the existing methods like multi-omics data integration utilizing adaptive graph learning and attention mode for patient categorization with biomarker identification (MOD-AGL-AM-PABI), deep learning method depending upon multi-omics data integration to create risk stratification prediction mode for skin cutaneous melanoma (DL-MODI-RSP-SCM), Deep belief network-base model for identifying Alzheimer's disease utilizing multi-omics data (DDN-DAD-MOD), hybrid cancer prediction depending upon multi-omics data and reinforcement learning state action reward state action (HCP-MOD-RL-SARSA), machine learning basis method under omics data including biological knowledge database for cancer clinical endpoint prediction (ML-ODBKD-CCEP) methods, respectively.
Targeting excitatory:inhibitory network imbalance in Alzheimer's disease
Blum D and Levi S
Synthesis of Novel Hydrazide-Hydrazone Compounds and and Investigation of Their Biological Activities against AChE, BChE, and hCA I and II
Çakmak R, Başaran E, Sahin K, Şentürk M and Durdağı S
The abnormal levels of the human carbonic anhydrase isoenzymes I and II (hCA I and II) and cholinesterase enzymes, namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are linked with various disorders including Alzheimer's disease. In this study, six new nicotinic hydrazide derivatives (-) were designed and synthesized for the first time, and their inhibitory profiles against hCA I, hCA II, AChE, and BChE were investigated by assays and studies. The structures of novel molecules were elucidated by using spectroscopic techniques and elemental analysis. These molecules showed inhibitory activities against hCA I and II with IC values ranging from 7.12 to 45.12 nM. Compared to reference drug acetazolamide (AZA), compound was the most active inhibitor against hCA I and II. On the other hand, it was determined that IC values of the tested molecules ranged between 21.45 and 61.37 nM for AChE and between 18.42 and 54.74 nM for BChE. Among them, compound was the most potent inhibitor of AChE and BChE, with IC values of 21.45 and 18.42 nM, respectively. In order to better understand the mode of action of these new compounds, state-of-the-art molecular modeling techniques were also conducted.
Neuroinflammation generated by HIV-infected microglia promotes dysfunction and death of neurons in human brain organoids
Kong W, Frouard J, Xie G, Corley MJ, Helmy E, Zhang G, Schwarzer R, Montano M, Sohn P, Roan NR, Ndhlovu LC, Gan L and Greene WC
Despite the success of combination antiretroviral therapy (ART) for individuals living with HIV, mild forms of HIV-associated neurocognitive disorder (HAND) continue to occur. Brain microglia form the principal target for HIV infection in the brain. It remains unknown how infection of these cells leads to neuroinflammation, neuronal dysfunction, and/or death observed in HAND. Utilizing two different inducible pluripotent stem cell-derived brain organoid models (cerebral and choroid plexus [ChP] organoids) containing microglia, we investigated the pathogenic changes associated with HIV infection. Infection of microglia was associated with a sharp increase in CCL2 and CXCL10 chemokine gene expression and the activation of many type I interferon stimulated genes (MX1, ISG15, ISG20, IFI27, IFITM3 and others). Production of the proinflammatory chemokines persisted at low levels after treatment of the cell cultures with ART, consistent with the persistence of mild HAND following clinical introduction of ART. Expression of multiple members of the S100 family of inflammatory genes sharply increased following HIV infection of microglia measured by single-cell RNA-seq. However, S100 gene expression was not limited to microglia but was also detected more broadly in uninfected stromal cells, mature and immature ChP cells, neural progenitor cells and importantly in bystander neurons suggesting propagation of the inflammatory response to bystander cells. Neurotransmitter transporter expression declined in uninfected neurons, accompanied by increased expression of genes promoting cellular senescence and cell death. Together, these studies underscore how an inflammatory response generated in HIV-infected microglia is propagated to multiple uninfected bystander cells ultimately resulting in the dysfunction and death of bystander neurons.
Peripheral GFAP and NfL as early biomarkers for dementia: longitudinal insights from the UK Biobank
Wang X, Shi Z, Qiu Y, Sun D and Zhou H
Peripheral glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are sensitive markers of neuroinflammation and neuronal damage. Previous studies with highly selected participants have shown that peripheral GFAP and NfL levels are elevated in the pre-clinical phase of Alzheimer's disease (AD) and dementia. However, the predictive value of GFAP and NfL for dementia requires more evidence from population-based cohorts.
Nurse Practitioner Care, Scope of Practice, and End-of-Life Outcomes for Nursing Home Residents With Dementia
Kosar CM, Thapa BB, Muench U, Santostefano C, Gadbois EA, Oh H, Gozalo PL, Rahman M and White EM
Nursing home residents with Alzheimer disease and related dementias (ADRD) often receive burdensome care at the end of life. Nurse practitioners (NPs) provide an increasing share of primary care in nursing homes, but how NP care is associated with end-of-life outcomes for this population is unknown.
UHPLC-MS/MS combined with microdialysis for simultaneous determination of nicotine and neurotransmitter metabolites in the rat hippocampal brain region: application to pharmacokinetic and pharmacodynamic study
Zhu M, Cui L, Liu G, Yu P, Hu Q, Chen H and Hou H
Nicotine crosses the blood-brain barrier and interacts with nicotinic acetylcholine receptors, initiating a cascade of neurotransmitter effects with potential therapeutic implications for neurodegenerative conditions such as Alzheimer's and Parkinson's disease. The hippocampus, pivotal for cognitive processes, plays a crucial role in nicotine-mediated cognitive enhancement due to its abundant expression of nicotinic acetylcholine receptors, particularly the α7 subtype, which is heavily implicated in hippocampus-related behavioral functions and dysfunctions. However, the intricate process of nicotine metabolism within the hippocampus remains poorly understood, impeding our comprehension of how nicotine and its metabolites modulate neurotransmitter dynamics. To address this gap, we have developed and validated a novel methodology combining microdialysis with UHPLC-MS/MS, enabling simultaneous detection of 12 neurotransmitters, nicotine, and its seven metabolites within the rat hippocampus. The linearity range of the targeted compounds is satisfactory ( > 0.9970), with intra-day and inter-day precision not exceeding 12.7%, and accuracy ranging from -12.4% to 13.7%. Our findings reveal differential pharmacokinetics of nicotine and its metabolites in the α7 group compared to the control group, characterized by heightened nicotine absorption and slower elimination and distribution in the former. Notably, the pharmacokinetic parameters of cotinine exhibit similarity across both groups. Studies investigating the impact of nicotine on monoamine neurotransmitters have elucidated its capacity to augment the release of dopamine, serotonin, norepinephrine, glutamate, and acetylcholine in the rat hippocampus. This integrated approach facilitates a comprehensive analysis of neurotransmitter alterations within the hippocampal region following nicotine administration, thereby providing robust technical support and scientific rationale for understanding the neurochemical effects of nicotine and its metabolites. Further exploration into the pharmacokinetics and pharmacodynamics of nicotine holds promise for uncovering novel therapeutic avenues in the management of neurodegenerative diseases such as Alzheimer's.
Deep brain stimulation of the amygdala for treatment-resistant combat post-traumatic stress disorder: Long-term results
Koek RJ, Avecillas-Chasin J, Krahl SE, Chen JW, Sultzer DL, Kulick AD, Mandelkern MA, Malpetti M, Gordon HL, Landry HN, Einstein EH and Langevin JP
Deep brain stimulation (DBS) holds promise for neuropsychiatric conditions where imbalance in network activity contributes to symptoms. Treatment-resistant Combat post-traumatic stress disorder (TR-PTSD) is a highly morbid condition and 50% of PTSD sufferers fail to recover despite psychotherapy or pharmacotherapy. Reminder-triggered symptoms may arise from inadequate top-down ventromedial prefrontal cortex (vmPFC) control of amygdala reactivity. Here, we report long-term data on two TR-PTSD participants from an investigation utilizing high-frequency amygdala DBS. The two combat veterans were implanted bilaterally with quadripolar electrodes targeting the basolateral amygdala. Following a randomized staggered onset, patients received stimulation with adjustments based on PTSD symptom severity for four years while psychiatric and neuropsychiatric symptoms, neuropsychological performance, and electroencephalography were systematically monitored. Evaluation of vmPFC-Amygdala network engagement was assessed with FDG positron emission tomography (PET). CAPS-IV scores varied over time, but improved 55% from 119 at baseline to 53 at 4-year study endpoint in participant 1; and 44%, from 68 to 38 in participant 2. Thereafter, during 5 and 1.5 years of subsequent clinical care respectively, long-term bilateral amygdala DBS was associated with additional, clinically significant symptomatic and functional improvement. There were no serious stimulation-related adverse psychiatric, neuropsychiatric, neuropsychological, neurological, or neurosurgical effects. In one subject, symptomatic improvement was associated with an intensity-dependent reduction in amygdala theta frequency power. In our two participants, FDG-PET findings were inconclusive regarding the hypothesized mechanism of suppression of amygdala hyperactivity. Our findings encourage further research to confirm and extend our preliminary observations.
Astrocyte-derived CHI3L1 signaling impairs neurogenesis and cognition in the demyelinated hippocampus
Song Y, Jiang W, Afridi SK, Wang T, Zhu F, Xu H, Nazir FH, Liu C, Wang Y, Long Y, Huang YA, Qiu W and Tang C
Cognitive dysfunction is a feature in multiple sclerosis (MS), a chronic inflammatory demyelinating disorder. A notable aspect of MS brains is hippocampal demyelination, which is closely associated with cognitive decline. However, the mechanisms underlying this phenomenon remain unclear. Chitinase-3-like (CHI3L1), secreted by activated astrocytes, has been identified as a biomarker for MS progression. Our study investigates CHI3L1's function within the demyelinating hippocampus and demonstrates a correlation between CHI3L1 expression and cognitive impairment in patients with MS. Activated astrocytes release CHI3L1 in reaction to induced demyelination, which adversely affects the proliferation and differentiation of neural stem cells and impairs dendritic growth, complexity, and spine formation in neurons. Our findings indicate that the astrocytic deletion of CHI3L1 can mitigate neurogenic deficits and cognitive dysfunction. We showed that CHI3L1 interacts with CRTH2/receptor for advanced glycation end (RAGE) by attenuating β-catenin signaling. The reactivation of β-catenin signaling can revitalize neurogenesis, which holds promise for therapy of inflammatory demyelination.
MitoTempo protects against nε-carboxymethyl lysine-induced mitochondrial dyshomeostasis and neuronal cells injury
Carvalho C and Moreira PI
Enhanced formation of advanced glycation end products (AGEs) is a pivotal factor in diabetes pathophysiology, increasing the risk of diabetic complications. Nε-carboxy-methyl-lysine (CML) is one of the most relevant AGEs found in several tissues including the peripheral blood of diabetic subjects. Despite recognizing diabetes as a risk factor for neurodegenerative diseases and the documented role of mitochondrial abnormalities in this connection, the impact of CML on neuronal mitochondria and its contribution to diabetes-related neurodegeneration remain uncertain. Here, we evaluated the effects of CML in differentiated SH-SY5Y human neuroblastoma cells. Due to the association between mitochondrial dysfunction and increased production of reactive oxygen species (ROS), the possible protective effects of MitoTempo, a mitochondria-targeted antioxidant, were also evaluated. Several parameters were assessed namely cells viability, mitochondrial respiration and membrane potential, ATP and ROS production, Ca levels, mitochondrial biogenesis and dynamics, mito/autophagy, endoplasmic reticulum (ER) stress and amyloidogenic and synaptic integrity markers. CML caused pronounced mitochondrial defects characterized by a significant decrease in mitochondrial respiration, membrane potential, and ATP production and an increase in ROS production. An accumulation of individual mitochondria associated with disrupted mitochondrial networks was also observed. Furthermore, CML caused mitochondrial fusion and a decrease in mitochondrial mass and induced ER stress associated with altered unfolded protein response and Ca dyshomeostasis. Moreover, CML increased the protein levels of β-secretase-1 and amyloid precursor protein, key proteins involved in Alzheimer's Disease pathophysiology. All these effects contributed to the decline in neuronal cells viability. Notable, MitoTempo was able to counteract most of CML-mediated mitochondrial defects and neuronal cells injury and death. Overall, these findings suggest that CML induces pronounced defects in neuronal mitochondria and ER stress, predisposing to neurodegenerative events. More, our observations suggest that MitoTempo holds therapeutic promise in mitigating CML-induced mitochondrial imbalance and neuronal damage and death.
Age-dependent impact of streptozotocin on metabolic endpoints and Alzheimer's disease pathologies in 3xTg-AD mice
Canet G, Gratuze M, Zussy C, Bouali ML, Diaz SD, Rocaboy E, Laliberté F, El Khoury NB, Tremblay C, Morin F, Calon F, Hébert SS, Julien C and Planel E
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease with a complex origin, thought to involve a combination of genetic, biological and environmental factors. Insulin dysfunction has emerged as a potential factor contributing to AD pathogenesis, particularly in individuals with diabetes, and among those with insulin deficiency or undergoing insulin therapy. The intraperitoneal administration of streptozotocin (STZ) is a widely used rodent model to explore the impact of insulin deficiency on AD pathology, although prior research predominantly focused on young animals, with no comparative analysis across different age groups. Our study aimed to fill this gap by analyzing the impact of insulin dysfunction in 7 and 23 months 3xTg-AD mice, that exhibit both amyloid and tau pathologies. Our objective was to elucidate the age-specific consequences of insulin deficiency on AD pathology. STZ administration led to insulin deficiency in the younger mice, resulting in an increase in cortical amyloid-β (Aβ) and tau aggregation, while tau phosphorylation was not significantly affected. Conversely, older mice displayed an unexpected resilience to the peripheral metabolic impact of STZ, while exhibiting an increase in both tau phosphorylation and aggregation without significantly affecting amyloid pathology. These changes were paralleled with alterations in signaling pathways involving tau kinases and phosphatases. Several markers of blood-brain barrier (BBB) integrity declined with age in 3xTg-AD mice, which might facilitate a direct neurotoxic effect of STZ in older mice. Overall, our research confirms the influence of insulin signaling dysfunction on AD pathology, but also advises careful interpretation of data related to STZ-induced effects in older animals.
Racial/Ethnic Disparities in Hospital Readmission and Frequent Hospitalizations Among Medicare Beneficiaries with Alzheimer's Disease and Related Dementia: Traditional Medicare vs. Medicare Advantage
Mahmoudi E, Margosian S and Lin P
Examine racial/ethnic disparities in 30-day readmission and frequent hospitalizations among Medicare beneficiaries with dementia in traditional Medicare (TM) vs. Medicare Advantage (MA).
Brain-targeted Tet-1 peptide-PLGA nanoparticles for berberine delivery against STZ-induced Alzheimer's disease in a rat model: Alleviation of hippocampal synaptic dysfunction, Tau pathology and amyloidogenesis
Saleh SR, Abd-Elmegied A, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Mehanna RA, Ghareeb DA and Abd-Elmonem NM
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes severe dementia and memory loss. Surface functionalized poly(lactic-co-glycolic acid) nanoparticles have been reported for better transport through the blood-brain barrier for AD therapy. This study investigated the improved therapeutic potential of berberine-loaded poly(lactic-co-glycolic acid)/Tet-1 peptide nanoparticles (BBR/PLGA-Tet NPs) in a rat model of sporadic AD. BBR was loaded into the PLGA-Tet conjugate. BBR/PLGA-Tet NPs were physicochemically and morphologically characterized. AD was achieved by bilateral intracerebroventricular (ICV) injection of streptozotocin (STZ). Cognitively impaired rats were divided into STZ, STZ + BBR, STZ + BBR/PLGA-Tet NPs, and STZ + PLGA-Tet NPs groups. Cognitive improvement was assessed using the Morris Water Maze. Brain acetylcholinesterase and monoamine oxidase activities, amyloid β42 (Aβ42), and brain glycemic markers were estimated. Further, hippocampal neuroplasticity (BDNF, pCREB, and pERK/ERK), Tau pathogenesis (pGSK3β/GSK3β, Cdk5, and pTau), inflammatory, and apoptotic markers were evaluated. Finally, histopathological changes were monitored. ICV-STZ injection produces AD-like pathologies evidenced by Aβ42 deposition, Tau hyperphosphorylation, impaired insulin signaling and neuroplasticity, and neuroinflammation. BBR and BBR/PLGA-Tet NPs attenuated STZ-induced hippocampal damage, enhanced cognitive performance, and reduced Aβ42, Tau phosphorylation, and proinflammatory responses. BBR/PLGA-Tet NPs restored neuroplasticity, cholinergic, and monoaminergic function, which are critical for cognition and brain function. BBR/PLGA-Tet NPs may have superior therapeutic potential in alleviating sporadic AD than free BBR due to their bioavailability, absorption, and brain uptake.
Effects of SPI1-mediated transcriptome remodeling on Alzheimer's disease-related phenotypes in mouse models of Aβ amyloidosis
Kim B, Dabin LC, Tate MD, Karahan H, Sharify AD, Acri DJ, Al-Amin MM, Philtjens S, Smith DC, Wijeratne HRS, Park JH, Jucker M and Kim J
SPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-β (Aβ) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.
Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy
Zheng Q and Wang X
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Non-cancer related causes of mortality in Merkel cell carcinoma: a national database study
Joshi TP, Cope D, Gonzalez C, Jang A, Mireles N, Nguyen O, Patel J and Ranario JS
A comprehensive review on the pharmacological role of gut microbiome in neurodegenerative disorders: potential therapeutic targets
Aziz N, Wal P, Patel A and Prajapati H
Neurological disorders, including Alzheimer and Parkinson's, pose significant challenges to public health due to their complex etiologies and limited treatment options. Recent advances in research have highlighted the intricate bidirectional communication between the gut microbiome and the central nervous system (CNS), revealing a potential therapeutic avenue for neurological disorders. Thus, this review aims to summarize the current understanding of the pharmacological role of gut microbiome in neurological disorders. Mounting evidence suggests that the gut microbiome plays a crucial role in modulating CNS function through various mechanisms, including the production of neurotransmitters, neuroactive metabolites, and immune system modulation. Dysbiosis, characterized by alterations in gut microbial composition and function, has been observed in many neurological disorders, indicating a potential causative or contributory role. Pharmacological interventions targeting the gut microbiome have emerged as promising therapeutic strategies for neurological disorders. Probiotics, prebiotics, antibiotics, and microbial metabolite-based interventions have shown beneficial effects in animal models and some human studies. These interventions aim to restore microbial homeostasis, enhance microbial diversity, and promote the production of beneficial metabolites. However, several challenges remain, including the need for standardized protocols, identification of specific microbial signatures associated with different neurological disorders, and understanding the precise mechanisms underlying gut-brain communication. Further research is necessary to unravel the intricate interactions between the gut microbiome and the CNS and to develop targeted pharmacological interventions for neurological disorders.
ATG14 and STX18: gatekeepers of lipid droplet degradation and the implications for disease modulation
Shatz N, Chohan Y and Klionsky DJ
Lipophagy, a form of autophagy specific to the degradation of lipid droplets (LDs), plays an important role in the maintenance of cellular homeostasis and metabolic processes. A recent study has identified ATG14 (autophagy related 14) as a molecule that targets LDs and marks them for degradation via lipophagy; a process that is inhibited by the binding of STX18 (syntaxin 18) to ATG14 in mammalian cells. The exact mechanism of regulation of lipophagy, and subsequently of cellular LD levels, is still under investigation; however, dysregulation of this process has been linked to a number of disease phenotypes. An imbalance of lipid levels can result in a wide variety of conditions depending on the cell/tissue type in which they occur. In cells of the retinal pigment epithelium, lipid accumulation can result in dry age-related macular degeneration, in hepatocytes it can result in nonalcoholic fatty liver diseases and in neural cells it can result in the pathogenesis of neurodegenerative conditions such as Alzheimer and Parkinson diseases. Based upon its wide range of implications in diseases, modulation of lipophagy is currently being further investigated for its potential as a treatment for a variety of conditions ranging from viral infection to developmental illnesses.
Characterizing molecular and synaptic signatures in mouse models of late-onset Alzheimer's disease independent of amyloid and tau pathology
Kotredes KP, Pandey RS, Persohn S, Elderidge K, Burton CP, Miner EW, Haynes KA, Santos DFS, Williams SP, Heaton N, Ingraham CM, Lloyd C, Garceau D, O'Rourke R, Herrick S, Rangel-Barajas C, Maharjan S, Wang N, Sasner M, Lamb BT, Territo PR, Sukoff Rizzo SJ, Carter GW, Howell GR and Oblak AL
MODEL-AD (Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease) is creating and distributing novel mouse models with humanized, clinically relevant genetic risk factors to capture the trajectory and progression of late-onset Alzheimer's disease (LOAD) more accurately.
Kinetic modeling of the monoamine oxidase-B radioligand [F]SMBT-1 in human brain with positron emission tomography
Lopresti BJ, Stehouwer J, Reese AC, Mason NS, Royse SK, Narendran R, Laymon CM, Lopez OL, Cohen AD, Mathis CA and Villemagne VL
This paper describes pharmacokinetic analyses of the monoamine-oxidase-B (MAO-B) radiotracer [F]()-(2-methylpyrid-5-yl)-6-[(3-fluoro-2-hydroxy)propoxy]quinoline ([F]SMBT-1) for positron emission tomography (PET) brain imaging. Brain MAO-B expression is widespread, predominantly within astrocytes. Reactive astrogliosis in response to neurodegenerative disease pathology is associated with MAO-B overexpression. Fourteen elderly subjects (8 control, 5 mild cognitive impairment, 1 Alzheimer's disease) with amyloid ([C]PiB) and tau ([F]flortaucipir) imaging assessments underwent dynamic [F]SMBT-1 PET imaging with arterial input function determination. [F]SMBT-1 showed high brain uptake and a retention pattern consistent with the known MAO-B distribution. A two-tissue compartment (2TC) model where the K/k ratio was fixed to a whole brain value best described [F]SMBT-1 kinetics. The 2TC total volume of distribution (V) was well identified and highly correlated (r∼0.8) with post-mortem MAO-B indices. Cerebellar grey matter (CGM) showed the lowest mean V of any region and is considered the optimal pseudo-reference region. Simplified analysis methods including reference tissue models, non-compartmental models, and standard uptake value ratios (SUVR) agreed with 2TC outcomes (r > 0.9) but with varying bias. We found the CGM-normalized 70-90 min SUVR to be highly correlated (r = 0.93) with the 2TC distribution volume ratio (DVR) with acceptable bias (∼10%), representing a practical alternative for [F]SMBT-1 analyses.
Single episode of moderate to severe traumatic brain injury leads to chronic neurological deficits and Alzheimer's-like pathological dementia
Vaibhav K, Gulhane M, Ahluwalia P, Kumar M, Ahluwalia M, Rafiq AM, Amble V, Zabala MG, Miller JB, Goldman L, Mondal AK, Deak F, Kolhe R, Arbab AS and Vale FL
Traumatic brain injury (TBI) is one of the foremost causes of disability and mortality globally. While the scientific and medical emphasis is to save lives and avoid disability during acute period of injury, a severe health problem can manifest years after injury. For instance, TBI increases the risk of cognitive impairment in the elderly. Remote TBI history was reported to be a cause of the accelerated clinical trajectory of Alzheimer's disease-related dementia (ADRD) resulting in earlier onset of cognitive impairment and increased AD-associated pathological markers like greater amyloid deposition and cortical thinning. It is not well understood whether a single TBI event may increase the risk of dementia. Moreover, the cellular signaling pathways remain elusive for the chronic effects of TBI on cognition. We have hypothesized that a single TBI induces sustained neuroinflammation and disrupts cellular communication in a way that results later in ADRD pathology. To test this, we induced TBI in young adult CD1 mice and assessed the behavioral outcomes after 11 months followed by pathological, histological, transcriptomic, and MRI assessment. On MRI scans, these mice showed significant loss of tissue, reduced CBF, and higher white matter injury compared to sham mice. We found these brains showed progressive atrophy, markers of ADRD, sustained astrogliosis, loss of neuronal plasticity, and growth factors even after 1-year post-TBI. Because of progressive neurodegeneration, these mice had motor deficits, showed cognitive impairments, and wandered randomly in open field. We, therefore, conclude that progressive pathology after adulthood TBI leads to neurodegenerative conditions such as ADRD and impairs neuronal functions.
Plasma biomarkers increase diagnostic confidence in patients with Alzheimer's disease or frontotemporal lobar degeneration
Altomare D, Libri I, Alberici A, Rivolta J, Padovani A, Ashton NJ, Zetterberg H, Blennow K and Borroni B
The recent development of techniques to assess plasma biomarkers has changed the way the research community envisions the future of diagnosis and management of Alzheimer's disease (AD) and other neurodegenerative disorders. This work aims to provide real world evidence on the clinical impact of plasma biomarkers in an academic tertiary care center.
Changes in Astroglial Water Flow in the Pre-amyloid Phase of the STZ Model of AD Dementia
Gayger-Dias V, Menezes L, Da Silva VF, Stiborski A, Silva ACR, Sobottka TM, Quines-Silva VC, Pakulski-Souto B, Bobermin LD, Quincozes-Santos A, Leite MC and Gonçalves CA
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease that is typically sporadic and has a high social and economic cost. We utilized the intracerebroventricular administration of streptozotocin (STZ), an established preclinical model for sporadic AD, to investigate hippocampal astroglial changes during the first 4 weeks post-STZ, a period during which amyloid deposition has yet to occur. Astroglial proteins aquaporin 4 (AQP-4) and connexin-43 (Cx-43) were evaluated, as well as claudins, which are tight junction (TJ) proteins in brain barriers, to try to identify changes in the glymphatic system and brain barrier during the pre-amyloid phase. Glial commitment, glucose hypometabolism and cognitive impairment were characterized during this phase. Astroglial involvement was confirmed by an increase in glial fibrillary acidic protein (GFAP); concurrent proteolysis was also observed, possibly mediated by calpain. Levels of AQP-4 and Cx-43 were elevated in the fourth week post-STZ, possibly accelerating the clearance of extracellular proteins, since these proteins actively participate in the glymphatic system. Moreover, although we did not see a functional disruption of the blood-brain barrier (BBB) at this time, claudin 5 (present in the TJ of the BBB) and claudin 2 (present in the TJ of the blood-cerebrospinal fluid barrier) were reduced. Taken together, data support a role for astrocytes in STZ brain damage, and suggest that astroglial dysfunction accompanies or precedes neuronal damage in AD.
Neuroprotection of macamide in a mouse model of Alzheimer's disease involves Nrf2 signaling pathway and gut microbiota
Xia N, Xu L, Huang M, Xu D, Li Y, Wu H, Mei Z and Yu Z
The underlying mechanisms of macamide's neuroprotective effects in Alzheimer's disease (AD) were investigated in the paper. Macamides are considered as unique ingredients in maca. Improvement effects and mechanisms of macamide on cognitive impairment have not been revealed. In this study, Vina 1.1.2 was used for docking to evaluate the binding abilities of 12 main macamides to acetylcholinesterase (AChE). N-benzyl-(9Z,12Z)-octadecadienamide (M 18:2) was selected to study the following experiments because it can stably bind to AChE with a strong binding energy. The animal experiments showed that M 18:2 prevented the scopolamine (SCP)-induced cognitive impairment and neurotransmitter disorders, increased the positive rates of Nrf2 and HO-1 in hippocampal CA1, improved the synaptic plasticity by maintaining synaptic morphology and increasing the synapse density. Moreover, the contents of IL-1β, IL-6, and TNF-α in the hippocampus, serum, and colon were reduced by M 18:2. Furthermore, M 18:2 promoted colonic epithelial integrity and partially restored the composition of the gut microbiota to normal, including decreased genera Clostridiales_unclassified and Lachnospiraceae_unclassified, as well as increased genera Muribaculaceae_unclassified, Muribaculum, Alistipes, and Bacteroides, which may be the possible biomarkers of cognitive aging. In summary, M 18:2 exerted neuroprotective effects on SCP-induced AD mice possibly via activating the Nrf2/HO-1 signaling pathway and modulating the gut microbiota.
Histone deacetylase-3 regulates the expression of the amyloid precursor protein and its inhibition promotes neuroregenerative pathways in Alzheimer's disease models
Davis N, Taylor B, Abelleira-Hervas L, Karimian-Marnani N, Aleksynas R, Syed N, Di Giovanni S, Palmisano I and Sastre M
HDAC3 inhibition has been shown to improve memory and reduce amyloid-β (Aβ) in Alzheimer's disease (AD) models, but the underlying mechanisms are unclear. We investigated the molecular effects of HDAC3 inhibition on AD pathology, using in vitro and ex vivo models of AD, based on our finding that HDAC3 expression is increased in AD brains. For this purpose, N2a mouse neuroblastoma cells as well as organotypic brain cultures (OBCSs) of 5XFAD and wild-type mice were incubated with various concentrations of the HDAC3 selective inhibitor RGFP966 (0.1-10 μM) for 24 h. Treatment with RGFP966 or HDAC3 knockdown in N2a cells was associated with an increase on amyloid precursor protein (APP) and mRNA expressions, without alterations in Aβ42 secretion. In vitro chromatin immunoprecipitation analysis revealed enriched HDAC3 binding at APP promoter regions. The increase in APP expression was also detected in OBCSs from 5XFAD mice incubated with 1 μM RGFP966, without changes in Aβ. In addition, HDAC3 inhibition resulted in a reduction of activated Iba-1-positive microglia and astrocytes in 5XFAD slices, which was not observed in OBCSs from wild-type mice. mRNA sequencing analysis revealed that HDAC3 inhibition modulated neuronal regenerative pathways related to neurogenesis, differentiation, axonogenesis, and dendritic spine density in OBCSs. Our findings highlight the complexity and diversity of the effects of HDAC3 inhibition on AD models and suggest that HDAC3 may have multiple roles in the regulation of APP expression and processing, as well as in the modulation of neuroinflammatory and neuroprotective genes.
Deep Trans-Omic Network Fusion for Molecular Mechanism of Alzheimer's Disease
Xie L, Raj Y, Varathan P, He B, Yu M, Nho K, Salama P, Saykin AJ and Yan J
There are various molecular hypotheses regarding Alzheimer's disease (AD) like amyloid deposition, tau propagation, neuroinflammation, and synaptic dysfunction. However, detailed molecular mechanism underlying AD remains elusive. In addition, genetic contribution of these molecular hypothesis is not yet established despite the high heritability of AD.
TLR4/Rac1/NLRP3 Pathway Mediates Amyloid-β-Induced Neuroinflammation in Alzheimer's Disease
Zhu M, Liu Y, Chen C, Chen H, Ni W, Song Y, Lv B, Hua F, Cui G and Zhang Z
Neuroinflammation plays a crucial part in the initial onset and progression of Alzheimer's disease (AD). NLRP3 inflammasome was demonstrated to get involved in amyloid-β (Aβ)-induced neuroinflammation. However, the mechanism of Aβ-triggered activation of NLRP3 inflammasome remains poorly understood.
Cognitive Screening for Mild Cognitive Impairment: Clinician Perspectives on Current Practices and Future Directions
Diaz-Asper C, Chandler C and Elvevåg B
 This study surveyed 51 specialist clinicians for their views on existing cognitive screening tests for mild cognitive impairment and their opinions about a hypothetical remote screener driven by artificial intelligence (AI). Responses revealed significant concerns regarding the sensitivity, specificity, and time taken to administer current tests, along with a general willingness to consider adopting telephone-based screening driven by AI. Findings highlight the need to design screeners that address the challenges of recognizing the earliest stages of cognitive decline and that prioritize not only accuracy but also stakeholder input.
In-silico Codon Context and Synonymous Usage Analysis of Genes for Molecular Mechanisms Inducing Autophagy and Apoptosis with Reference to Neurodegenerative Disorders
Khandia R, Gurjar P, Romashchenko V, Al-Hussain SA, Alexiou A, Zouganelis G and Zaki MEA
Autophagy and apoptosis are cellular processes that maintain cellular homeostasis and remove damaged or aged organelles or aggregated and misfolded proteins. Stress factors initiate the signaling pathways common to autophagy and apoptosis. An imbalance in the autophagy and apoptosis, led by cascade of molecular mechanism prior to both processes culminate into neurodegeneration.
Slovenian Memory Clinic Organization with the Introduction of Potential New Alzheimer's Disease Treatment
Zupanic E, Emersic A, Wimo A, Winblad B, Speh A and Kramberger MG
Slovenia, situated in Central Europe with a population of 2.1 million, has an estimated 44,278 individuals with mild cognitive impairment due to Alzheimer's disease or mild Alzheimer's dementia, rendering them potential candidates for disease-modifying treatment (DMT), such as lecanemab. We identified 114 potential candidates whose real-life expenses for diagnostic process surmount to more than €80,000. Treating all potential candidates nationwide would amount to €1.06 billion, surpassing Slovenia's entire annual medication expenditure for 2022 (€743 million). The introduction of DMTs and the associated logistics, along with potential complications, will significantly change societal, professional, and patient approach to treatment of Alzheimer's disease.
Sildenafil Reverses the Neuropathological Alzheimer's Disease Phenotype in Cholinergic-Like Neurons Carrying the Presenilin 1 E280A Mutation
Giraldo-Berrio D, Jimenez-Del-Rio M and Velez-Pardo C
Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-β (Aβ) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease.
The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges
Zheng H, Sun H, Cai Q and Tai HC
Tau protein misfolding and aggregation are pathological hallmarks of Alzheimer's disease and over twenty neurodegenerative disorders. However, the molecular mechanisms of tau aggregation in vivo remain incompletely understood. There are two types of tau aggregates in the brain: soluble aggregates (oligomers and protofibrils) and insoluble filaments (fibrils). Compared to filamentous aggregates, soluble aggregates are more toxic and exhibit prion-like transmission, providing seeds for templated misfolding. Curiously, in its native state, tau is a highly soluble, heat-stable protein that does not form fibrils by itself, not even when hyperphosphorylated. In vitro studies have found that negatively charged molecules such as heparin, RNA, or arachidonic acid are generally required to induce tau aggregation. Two recent breakthroughs have provided new insights into tau aggregation mechanisms. First, as an intrinsically disordered protein, tau is found to undergo liquid-liquid phase separation (LLPS) both in vitro and inside cells. Second, cryo-electron microscopy has revealed diverse fibrillar tau conformations associated with different neurodegenerative disorders. Nonetheless, only the fibrillar core is structurally resolved, and the remainder of the protein appears as a "fuzzy coat". From this review, it appears that further studies are required (1) to clarify the role of LLPS in tau aggregation; (2) to unveil the structural features of soluble tau aggregates; (3) to understand the involvement of fuzzy coat regions in oligomer and fibril formation.
In Search for Low-Molecular-Weight Ligands of Human Serum Albumin That Affect Its Affinity for Monomeric Amyloid β Peptide
Deryusheva EI, Shevelyova MP, Rastrygina VA, Nemashkalova EL, Vologzhannikova AA, Machulin AV, Nazipova AA, Permyakova ME, Permyakov SE and Litus EA
An imbalance between production and excretion of amyloid β peptide (Aβ) in the brain tissues of Alzheimer's disease (AD) patients leads to Aβ accumulation and the formation of noxious Aβ oligomers/plaques. A promising approach to AD prevention is the reduction of free Aβ levels by directed enhancement of Aβ binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aβ. Here we develop this approach through a bioinformatic search for the clinically approved AD-related LMWLs in HSA, followed by classification of the candidates according to the predicted location of their binding sites on the HSA surface, ranking of the candidates, and selective experimental validation of their impact on HSA affinity for Aβ. The top 100 candidate LMWLs were classified into five clusters. The specific representatives of the different clusters exhibit dramatically different behavior, with 3- to 13-fold changes in equilibrium dissociation constants for the HSA-Aβ40 interaction: prednisone favors HSA-Aβ interaction, mefenamic acid shows the opposite effect, and levothyroxine exhibits bidirectional effects. Overall, the LMWLs in HSA chosen here provide a basis for drug repurposing for AD prevention, and for the search of medications promoting AD progression.
Circadian ABCG2 Expression Influences the Brain Uptake of Donepezil across the Blood-Cerebrospinal Fluid Barrier
Furtado A, Duarte AC, Costa AR, Gonçalves I, Santos CRA, Gallardo E and Quintela T
Donepezil (DNPZ) is a cholinesterase inhibitor used for the management of Alzheimer's disease (AD) and is dependent on membrane transporters such as ABCG2 to actively cross brain barriers and reach its target site of action in the brain. Located in the brain ventricles, the choroid plexus (CP) forms an interface between the cerebrospinal fluid (CSF) and the bloodstream, known as the blood-CSF barrier (BCSFB). Historically, the BCSFB has received little attention as a potential pathway for drug delivery to the central nervous system (CNS). Nonetheless, this barrier is presently viewed as a dynamic transport interface that limits the traffic of molecules into and out of the CNS through the presence of membrane transporters, with parallel activity with the BBB. The localization and expression of drug transporters in brain barriers represent a huge obstacle for drug delivery to the brain and a major challenge for the development of therapeutic approaches to CNS disorders. The widespread interest in understanding how circadian clocks modulate many processes that define drug delivery in order to predict the variability in drug safety and efficacy is the next bridge to improve effective treatment. In this context, this study aims at characterizing the circadian expression of ABCG2 and DNPZ circadian transport profile using an in vitro model of the BCSFB. We found that ABCG2 displays a circadian pattern and DNPZ is transported in a circadian way across this barrier. This study will strongly impact on the capacity to modulate the BCSFB in order to control the penetration of DNPZ into the brain and improve therapeutic strategies for the treatment of AD according to the time of the day.
Loss of Cholinergic and Monoaminergic Afferents in Transgenic Mouse Model of Cerebral Amyloidosis Preferentially Occurs Near Amyloid Plaques
Lee MK and Chen G
Alzheimer's disease (AD) is characterized by a loss of neurons in the cortex and subcortical regions. Previously, we showed that the progressive degeneration of subcortical monoaminergic (MAergic) neurons seen in human AD is recapitulated in the (APP/PS) transgenic mouse model. Because degeneration of cholinergic (Ach) neurons is also a prominent feature of AD, we examined the integrity of the Ach system in the APP/PS model. The overall density of Ach fibers is reduced in APP/PS1 mice at 12 and 18 months of age but not at 4 months of age. Analysis of basal forebrain Ach neurons shows no loss of Ach neurons in the APP/PS model. Thus, since MAergic systems show overt cell loss at 18 months of age, the Ach system is less vulnerable to neurodegeneration in the APP/PS1 model. We also examined whether the proximity to Aβ deposition affected the degeneration of Ach and 5-HT afferents. We found that the areas closer to the edges of compact Aβ deposits exhibit a more severe loss of afferents than the areas that are more distal to Aβ deposits. Collectively, the results indicate that the APP/PS model recapitulates the degeneration of multiple subcortical neurotransmitter systems, including the Ach system. In addition, the results indicate that Aβ deposits cause global as well as local toxicity to subcortical afferents.
Amyloid Beta Leads to Decreased Acetylcholine Levels and Non-Small Cell Lung Cancer Cell Survival via a Mechanism That Involves p38 Mitogen-Activated Protein Kinase and Protein Kinase C in a p53-Dependent and -Independent Manner
Al Khashali H, Ray R, Darweesh B, Wozniak C, Haddad B, Goel S, Seidu I, Khalil J, Lopo B, Murshed N, Guthrie J, Heyl D and Evans HG
Several studies have shown an inverse correlation between the likelihood of developing a neurodegenerative disorder and cancer. We previously reported that the levels of amyloid beta (Aβ), at the center of Alzheimer's disease pathophysiology, are regulated by acetylcholinesterase (AChE) in non-small cell lung cancer (NSCLC). Here, we examined the effect of Aβ or its fragments on the levels of ACh in A549 (p53 wild-type) and H1299 (p53-null) NSCLC cell media. ACh levels were reduced by cell treatment with Aβ 1-42, Aβ 1-40, Aβ 1-28, and Aβ 25-35. AChE and p53 activities increased upon A549 cell treatment with Aβ, while knockdown of p53 in A549 cells increased ACh levels, decreased AChE activity, and diminished the Aβ effects. Aβ increased the ratio of phospho/total p38 MAPK and decreased the activity of PKC. Inhibiting p38 MAPK reduced the activity of p53 in A549 cells and increased ACh levels in the media of both cell lines, while opposite effects were found upon inhibiting PKC. ACh decreased the activity of p53 in A549 cells, decreased p38 MAPK activity, increased PKC activity, and diminished the effect of Aβ on those activities. Moreover, the negative effect of Aβ on cell viability was diminished by cell co-treatment with ACh.
Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications
Charrière K, Schneider V, Perrignon-Sommet M, Lizard G, Benani A, Jacquin-Piques A and Vejux A
Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present in plants: vegetables (parsley, celery, onions), fruits (oranges), herbs (chamomile, thyme, oregano, basil), and some beverages (tea, beer, and wine). This review explores the potential of apigenin as an anti-inflammatory agent across diverse neurological conditions (multiple sclerosis, Parkinson's disease, Alzheimer's disease), cancer, cardiovascular diseases, cognitive and memory disorders, and toxicity related to trace metals and other chemicals. Drawing upon major studies, we summarize apigenin's multifaceted effects and underlying mechanisms in neuroinflammation. Our review underscores apigenin's therapeutic promise and calls for further investigation into its clinical applications.
RETRACTED: Serebrovska et al. Intermittent Hypoxia-Hyperoxia Training Improves Cognitive Function and Decreases Circulating Biomarkers of Alzheimer's Disease in Patients with Mild Cognitive Impairment: A Pilot Study. 2019, , 5405
Serebrovska ZO, Serebrovska TV, Kholin VA, Tumanovska LV, Shysh AM, Pashevin DA, Goncharov SV, Stroy D, Grib ON, Shatylo VB, Bachinskaya NY, Egorov E, Xi L and Dosenko VE
The journal .
Role of Bioactives in Neurodegenerative Diseases
Zacharia LC
Neurodegenerative diseases (NDs) affect millions worldwide, with the two most prevalent being Alzheimer's and Parkinson disease [...].
Olfactory Dysfunction and Alzheimer's Disease: A Review
McLaren AMR and Kawaja MD
 Alzheimer's disease is the most common cause of dementia, and it is one of the leading causes of death globally. Identification and validation of biomarkers that herald the onset and progression of Alzheimer's disease is of paramount importance for early reliable diagnosis and effective pharmacological therapy commencement. A substantial body of evidence has emerged demonstrating that olfactory dysfunction is a preclinical symptom of neurodegenerative diseases including Alzheimer's disease. While a correlation between olfactory dysfunction and Alzheimer's disease onset and progression in humans exists, the mechanism underlying this relationship remains unknown. The aim of this article is to review the current state of knowledge regarding the range of potential factors that may contribute to the development of Alzheimer's disease-related olfactory dysfunction. This review predominantly focuses on genetic mutations associated with Alzheimer's disease including amyloid-β protein precursor, presenilin 1 and 2, and apolipoprotein E mutations, that may (in varying ways) drive the cellular events that lead to and sustain olfactory dysfunction.
Cognitive dysfunction characteristics of multiple sclerosis with aging
Vidorreta-Ballesteros L, Matias-Guiu JA, Delgado-Álvarez A, Delgado-Alonso C, Valles-Salgado M, Cuevas C, Gil-Moreno MJ, García-Ramos R, Montero-Escribano P and Matias-Guiu J
We aimed to investigate the characteristics of cognitive impairment in older people with multiple sclerosis (MS).
Association between untreated and treated blood pressure levels and cognitive decline in community-dwelling middle-aged and older adults in China: a longitudinal study
Li H, Wang M, Qian F, Wu Z, Liu W, Wang A and Guo X
Optimal blood pressure (BP) levels to reduce the long-term risk of cognitive decline remains controversial. We aimed to investigate the association between BP and anti-hypertensive treatment status with cognitive decline in older adults.
TDP-43 Is Associated with Subiculum and Cornu Ammonis 1 Hippocampal Subfield Atrophy in Primary Age-Related Tauopathy
Youssef H, Gatto RG, Pham NTT, Petersen RC, Machulda MM, Reichard RR, Dickson DW, Jack CR, Whitwell JL and Josephs KA
TAR DNA binding protein 43 (TDP-43) has been shown to be associated with whole hippocampal atrophy in primary age-related tauopathy (PART). It is currently unknown which subregions of the hippocampus are contributing to TDP-43 associated whole hippocampal atrophy in PART.
Acute Hyperglycemia Induced by Hyperglycemic Clamp Affects Plasma Amyloid-β in Type 2 Diabetes
Rolandsson O, Tornevi A, Steneberg P, Edlund H, Olsson T, Andreasson U, Zetterberg H and Blennow K
Individuals with type 2 diabetes (T2D) have an increased risk of cognitive symptoms and Alzheimer's disease (AD). Mis-metabolism with aggregation of amyloid-β peptides (Aβ) play a key role in AD pathophysiology. Therefore, human studies on Aβ metabolism and T2D are warranted.
The role of CELF family in neurodevelopment and neurodevelopmental disorders
Peng S, Cai X, Chen J, Sun J, Lai B, Chang M and Xing L
RNA-binding proteins (RBPs) bind to RNAs and are crucial for regulating RNA splicing, stability, translation, and transport. Among these proteins, the CUGBP Elav-like family (CELF) is a highly conserved group crucial for posttranscriptional regulation by binding to CUG repeats. Comprising CELF1-6, this family exhibits diverse expression patterns and functions. Dysregulation of CELF has been implicated in various neural disorders, encompassing both neurodegenerative and neurodevelopmental conditions, such as Alzheimer's disease and autism. This article aims to provide a comprehensive summary of the CELF family's role in neurodevelopment and neurodevelopmental disorders. Understanding CELF's mechanisms may offer clues for potential therapeutic strategies by regulating their targets in neurodevelopmental disorders.
CAIDE Score, Alzheimer's Disease Pathology, and Cognition in Cognitively Normal Adults: The CABLE Study
Guo ZX, Liu F, Wang FY, Ou YN, Huang LY, Hu H, Wang ZB, Fu Y, Gao PY, Tan L and Yu JT
Cardiovascular Risk Factors, Ageing and Dementia (CAIDE) risk score serves as a credible predictor of an individual's risk of dementia. However, studies on the link of the CAIDE score to Alzheimer's disease (AD) pathology are scarce.
Population-based cohort study of Toxoplasma gondii P22 antibody positivity correlation with anxiety
Yang L, Wang B, Wu S, Yang Z, Xin Z, Zheng S, Zou W, Zhang C, Chen J and Peng H
Accumulating evidence suggests that latent infection with Toxoplasma gondii is associated with a variety of neuropsychiatric and behavioral conditions. This research aims to explore the potential correlation between T. gondii antibody positivity and neuropsychiatric disorders through a comprehensive prospective cohort study.
MLm5C: A high-precision human RNA 5-methylcytosine sites predictor based on a combination of hybrid machine learning models
Kurata H, Harun-Or-Roshid M, Mehedi Hasan M, Tsukiyama S, Maeda K and Manavalan B
RNA modification serves as a pivotal component in numerous biological processes. Among the prevalent modifications, 5-methylcytosine (m5C) significantly influences mRNA export, translation efficiency and cell differentiation and are also associated with human diseases, including Alzheimer's disease, autoimmune disease, cancer, and cardiovascular diseases. Identification of m5C is critically responsible for understanding the RNA modification mechanisms and the epigenetic regulation of associated diseases. However, the large-scale experimental identification of m5C present significant challenges due to labor intensity and time requirements. Several computational tools, using machine learning, have been developed to supplement experimental methods, but identifying these sites lack accuracy and efficiency. In this study, we introduce a new predictor, MLm5C, for precise prediction of m5C sites using sequence data. Briefly, we evaluated eleven RNA sequence-derived features with four basic machine learning algorithms to generate baseline models. From these 44 models, we ranked them based on their performance and subsequently stacked the Top 20 baseline models as the best model, named MLm5C. The MLm5C outperformed the-state-of-the-art predictors. Notably, the optimization of the sequence length surrounding the modification sites significantly improved the prediction performance. MLm5C is an invaluable tool in accelerating the detection of m5C sites within the human genome, thereby facilitating in the characterization of their roles in post-transcriptional regulation.
Association of Age with Dual-Task Objective Cognitive Indicators and Gait Parameters in Older Adults
Wang L, Zhang X, Wang L, Guo M, Yang Q, Chen X and Sha H
Early recognition of dementia like Alzheimer's disease is crucial for disease diagnosis and treatment, and existing objective tools for early screening of cognitive impairment are limited.
Updated safety results from phase 3 lecanemab study in early Alzheimer's disease
Honig LS, Sabbagh MN, van Dyck CH, Sperling RA, Hersch S, Matta A, Giorgi L, Gee M, Kanekiyo M, Li D, Purcell D, Dhadda S, Irizarry M and Kramer L
Alzheimer disease (AD) is a major health problem of aging, with tremendous burden on healthcare systems, patients, and families globally. Lecanemab, an FDA-approved amyloid beta (Aβ)-directed antibody indicated for the treatment of early AD, binds with high affinity to soluble Aβ protofibrils, which have been shown to be more toxic to neurons than monomers or insoluble fibrils. Lecanemab has been shown to be well tolerated in multiple clinical trials, although risks include an increased rate of amyloid-related imaging abnormalities (ARIA) and infusion reactions relative to placebo.
Investigating the effect of parasites (toxoplasma gondii RH strain, Leishmania major (MRHO/IR/75/ER), and hydatid cyst) antigens on Alzheimer's disease: An in vivo evaluation
Barati N, Shojaeian A, Ramezani M, Kalhori F, Bazl MSY, Zafari S, Asl SS and Motavallihaghi S
This study aimed to investigate the effects of parasite antigens on Alzheimer's symptoms in animal model. Alzheimer's model was induced in Wistar rats using Amyloid-beta peptide, and treated with parasite crude antigens from T. gondii RH strain, L. major (MRHO/IR/75/ER), and HC. Spectrophotometry and real-time PCR were used to evaluate the oxidative stress levels, antioxidant enzyme activity, and gene expression of NLRP3, IL-8, IL-1β, and Caspase-1. Histological assays were performed to investigate structural changes in the hippocampus. Apoptosis was analyzed using an Annexin V Apoptosis by Flow cytometer. The levels of total oxidant, antioxidant, and SOD increased in the Alzheimer's group compared with the control group, but these factors were lower in the L. major group. The apoptosis in the treated groups was lower compared to the Alzheimer's group. IL-8 expression was significantly higher in all Alzheimer's groups, but decreased in the HC and L. major treated group compared to Alzheimer's. IL-1β and Caspase-1 expression were similarly increased in all groups compared with the control group, but decreased in the antigen-treated groups compared with Alzheimer's. NLRP3 expression was increased in all groups compared with the control group, with lower expression in HC group, but significantly decreased in L. major group compared with Alzheimer's. In histological results, only L. major group could play a therapeutic role in pathological damage of the hippocampus. The results showed that parasite antigens, specifically L. major antigens, may have neuroprotective effects that reduce oxidative stress, apoptosis, and histopathological changes in response to AD in animal model.
Protective effects of 2,4-dinitrophenol in okadaic acid-induced cellular model of Alzheimer's disease
Cardoso S, Carvalho C, Correia SC and Moreira PI
Alzheimer's disease (AD) research started several decades ago and despite the many efforts employed to develop new treatments or approaches to slow and/or revert disease progression, AD treatment remains an unsolved issue. Knowing that mitochondria loss of function is a central hub for many AD-associated pathophysiological processes, there has been renewed interest in exploring mitochondria as targets for intervention. In this perspective, the present study was aimed to investigate the possible beneficial effects of 2,4 dinitrophenol (DNP), a mitochondrial uncoupler agent, in an in vitro model of AD. Retinoic acid-induced differentiated SH-SY5Y cells were incubated with okadaic acid (OA), a neurotoxin often used as an AD experimental model, and/or with DNP. OA caused a decrease in neuronal cells viability, induced multiple mitochondrial anomalies including increased levels of reactive oxygen species, decreased bioenergetics and mitochondria content markers, and an altered mitochondria morphology. OA-treated cells also presented increased lipid peroxidation levels, and overactivation of tau related kinases (GSK3β, ERK1/2 and AMPK) alongside with a significant augment in tau protein phosphorylation levels. Interestingly, DNP co-treatment ameliorated and rescued OA-induced detrimental effects not only on mitochondria but also but also reinstated signaling pathways homeostasis and ameliorated tau pathology. Overall, our results show for the first time that DNP has the potential to preserve mitochondria homeostasis under a toxic insult, like OA exposure, as well as to reestablish cellular signaling homeostasis. These observations foster the idea that DNP, as a mitochondrial modulator, might represent a new avenue for treatment of AD.
Letter to the editor: Limitations of acetylcholinesterase inhibitor (AChEI) therapy for Alzheimer's disease
Yang G, Wu J, Lei H and Hui Y
Robot-Based Solution for Helping Alzheimer Patients
Faisal M, Alharbi A, Alhamadi A, Almutairi S, Alenezi S, Alsulaili A, Khan M and Khan F
Alzheimer's is a progressive and debilitating neurological disorder characterized by cognitive decline, memory loss, and impaired daily functioning. It is an irreversible brain disease that destroys memory, thinking, and the ability to carry out daily activities. It poses significant challenges for patients and healthcare providers. Modern societies are trying to enhance the quality of people's lives, including Alzheimer's patients. In this study, we explored the potential of social robots to provide emotional support, improve cognitive function, and facilitate communication among Alzheimer's patients. This was achieved by initiating conversations on various topics such as family, relationships, and daily activities. This paper contributes to the literature by introducing a novel and well-organized framework for building an Alzheimer's care robot. Further, this study enriches the literature by introducing the Alzheimer Care Companion Robot (ACCR), designed to identify Alzheimer's patients. The ACCR initiates conversations in the native Arab-Kuwaiti dialect, displaying relevant memories through images and videos on its screen to assist in memory recall based on the individuals' life experiences. The proposed ACCR consists of 271 conversations belonging to three main categories: active, proactive, and graphical user interface (GUI) dialogs comprising 112 dialogs, 109 dialogs, and 50 dialogs for active, proactive, and GUI, respectively. The experimental result illustrated the success of the proposed solution.
STAU1 exhibits a dual function by promoting amyloidogenesis and tau phosphorylation in cultured cells
Li CL, Zhou GF, Xie XY, Wang L, Chen X, Pan QL, Pu YL, Yang J, Song L and Chen GJ
Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral β-amyloid protein (Aβ) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of β-amyloid converting enzyme 1 (BACE1) and Aβ. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 β (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.
Serum urate levels and neurodegenerative outcomes: a prospective cohort study and mendelian randomization analysis of the UK Biobank
Zhang T, An Y, Shen Z, Yang H, Jiang J, Chen L, Lu Y and Xia Y
Previous studies on the associations between serum urate levels and neurodegenerative outcomes have yielded inconclusive results, and the causality remains unclear. This study aimed to investigate whether urate levels are associated with the risks of Alzheimer's disease and related dementias (ADRD), Parkinson's disease (PD), and neurodegenerative deaths.
Corrigendum to "Systemic inflammation relates to neuroaxonal damage associated with long-term cognitive dysfunction in COVID-19 patients" [Brain Behav. Immun. 117 (2024) 510-520]
Duindam HB, Mengel D, Kox M, Göpfert JC, Kessels RPC, Synofzik M, Pickkers P and Abdo WF
Genes related to neurotransmitter receptors as potential biomarkers for Alzheimer's disease
Chen W, Zhang T and Zhang H
Alzheimer's disease (AD) is a leading cause of dementia and is rapidly emerging as one of the costliest and most burdensome diseases. Neurotransmitter receptors play a vital role in many neuronal processes, primarily regulating signal inhibition within the brain to facilitate cell communication.
Diagnostic implications of ubiquitination-related gene signatures in Alzheimer's disease
Xu F, Gao W, Zhang M, Zhang F, Sun X, Wu B, Liu Y, Li X and Li H
The purpose of this study was to explore the diagnostic implications of ubiquitination-related gene signatures in Alzheimer's disease. In this study, we first collected 161 samples from the GEO database (including 87 in the AD group and 74 in the normal group). Subsequently, through differential expression analysis and the iUUCD 2.0 database, we obtained 3450 Differentially Expressed Genes (DEGs) and 806 Ubiquitin-related genes (UbRGs). After taking the intersection, we obtained 128 UbR-DEGs. Secondly, by conducting GO and KEGG enrichment analysis on these 128 UbR-DEGs, we identified the main molecular functions and biological pathways related to AD. Furthermore, through the utilization of GSEA analysis, we have gained insight into the enrichment of functions and pathways within both the AD and normal groups. Further, using lasso regression analysis and cross-validation techniques, we identified 22 characteristic genes associated with AD. Subsequently, we constructed a logistic regression model and optimized it, resulting in the identification of 6 RUbR-DEGs: KLHL21, WDR82, DTX3L, UBTD2, CISH, and ATXN3L. In addition, the ROC result showed that the diagnostic model we built has excellent accuracy and reliability in identifying AD patients. Finally, we constructed a lncRNA-miRNA-mRNA (competing endogenous RNA, ceRNA) regulatory network for AD based on six RUbR-DEGs, further elucidating the interaction between UbRGs and lncRNA, miRNA. In conclusion, our findings will contribute to further understanding of the molecular pathogenesis of AD and provide a new perspective for AD risk prediction, early diagnosis and targeted therapy in the population.
Unsupervised multimodal modeling of cognitive and brain health trajectories for early dementia prediction
Burkhart MC, Lee LY, Vaghari D, Toh AQ, Chong E, Chen C, Tiňo P and Kourtzi Z
Predicting the course of neurodegenerative disorders early has potential to greatly improve clinical management and patient outcomes. A key challenge for early prediction in real-world clinical settings is the lack of labeled data (i.e., clinical diagnosis). In contrast to supervised classification approaches that require labeled data, we propose an unsupervised multimodal trajectory modeling (MTM) approach based on a mixture of state space models that captures changes in longitudinal data (i.e., trajectories) and stratifies individuals without using clinical diagnosis for model training. MTM learns the relationship between states comprising expensive, invasive biomarkers (β-amyloid, grey matter density) and readily obtainable cognitive observations. MTM training on trajectories stratifies individuals into clinically meaningful clusters more reliably than MTM training on baseline data alone and is robust to missing data (i.e., cognitive data alone or single assessments). Extracting an individualized cognitive health index (i.e., MTM-derived cluster membership index) allows us to predict progression to AD more precisely than standard clinical assessments (i.e., cognitive tests or MRI scans alone). Importantly, MTM generalizes successfully from research cohort to real-world clinical data from memory clinic patients with missing data, enhancing the clinical utility of our approach. Thus, our multimodal trajectory modeling approach provides a cost-effective and non-invasive tool for early dementia prediction without labeled data (i.e., clinical diagnosis) with strong potential for translation to clinical practice.
Monocytes release cystatin F dimer to associate with Aβ and aggravate amyloid pathology and cognitive deficits in Alzheimer's disease
Li Q, Li B, Liu L, Wang KJ, Liu MY, Deng Y, Li Z, Zhao WD, Wu LY, Chen YH and Zhang K
Understanding the molecular mechanisms of Alzheimer's disease (AD) has important clinical implications for guiding therapy. Impaired amyloid beta (Aβ) clearance is critical in the pathogenesis of sporadic AD, and blood monocytes play an important role in Aβ clearance in the periphery. However, the mechanism underlying the defective phagocytosis of Aβ by monocytes in AD remains unclear.
Extreme behavioural and psychological symptoms of dementia: a case study
Mulchandani M and Conrad A
The seven tiered behavioural and psychological symptoms of dementia (BPSD) model of service delivery has been used by inpatient units. The classification of each tier is broadly defined and not always agreed upon by clinicians. The case study uses novel approach by combining the BPSD classification criteria with clinical presentation to identify the clinical characteristics of the case and match these characteristics against the BPSD classification. This process was enhanced by using case specific measures such as the Neuropsychiatric Inventory (NPI) and Cohen Mansfield Agitation Inventory (CMAI) scales and key clinical data.
Harmonizing three-dimensional MRI using pseudo-warping field guided GAN
Lin J, Li Z, Zeng Y, Liu X, Li L, Jahanshad N, Ge X, Zhang D, Lu M, Liu M and
In pursuit of cultivating automated models for magnetic resonance imaging (MRI) to aid in diagnostics, an escalating demand for extensive, multisite, and heterogeneous brain imaging datasets has emerged. This potentially introduces biased outcomes when directly applied for subsequent analysis. Researchers have endeavored to address this issue by pursuing the harmonization of MRIs. However, most existing image-based harmonization methods for MRI are tailored for 2D slices, which may introduce inter-slice variations when they are combined into a 3D volume. In this study, we aim to resolve inconsistencies between slices by introducing a pseudo-warping field. This field is created randomly and utilized to transform a slice into an artificially warped subsequent slice. The objective of this pseudo-warping field is to ensure that generators can consistently harmonize adjacent slices to another domain, without being affected by the varying content present in different slices. Furthermore, we construct unsupervised spatial and recycle loss to enhance the spatial accuracy and slice-wise consistency across the 3D images. The results demonstrate that our model effectively mitigates inter-slice variations and successfully preserves the anatomical details of the images during the harmonization process. Compared to generative harmonization models that employ 3D operators, our model exhibits greater computational efficiency and flexibility.
From aberrant neurodevelopment to neurodegeneration: Insights into the hub gene associated with autism and alzheimer's disease
Fu Y, Xie GM, Liu RQ, Xie JL, Zhang J and Zhang J
Reduced Expression of CLEC4G in Neurons Is Associated with Alzheimer's Disease
Feng X, Qi F, Huang Y, Zhang G and Deng W
CLEC4G, a glycan-binding receptor, has previously been demonstrated to inhibit Aβ generation, yet its brain localization and functions in Alzheimer's disease (AD) are not clear. We explored the localization, function, and regulatory network of CLEC4G via experiments and analysis of RNA-seq databases. CLEC4G transcripts and proteins were identified in brain tissues, with the highest expression observed in neurons. Notably, AD was associated with reduced levels of CLEC4G transcripts. Bioinformatic analyses revealed interactions between CLEC4G and relevant genes such as BACE1, NPC1, PILRA, TYROBP, MGAT1, and MGAT3, all displaying a negative correlation trend. We further identified the upstream transcriptional regulators NR2F6 and XRCC4 for CLEC4G and confirmed a decrease in CLEC4G expression in APP/PS1 transgenic mice. This study highlights the role of CLEC4G in protecting against AD progression and the significance of CLEC4G for AD research and management.
Electropositive Citric Acid-Polyethyleneimine Carbon Dots Carrying the PINK1 Gene Regulate ATP-Related Metabolic Dysfunction in APP/PS1-N2a Cells
Yu S, Guo F, Luo Y, Zhang X, Wang C, Liu Y and Zhang H
(1) Background: Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na/Ca exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aβ1-40 and Aβ1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aβ1-40 and Aβ1-42, and increasing ATP production.
Protection of Si Nanowires against A Toxicity by the Inhibition of A Aggregation
Zhao X, Mou C, Xu J, Cui W, Shi Y, Wang Y, Luo T, Guo W, Ye J and Chen W
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (A) plaques in the brain. A is the main component of A plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) have the advantages of small particle size, high specific surface area, and good biocompatibility, and have potential application prospects in suppressing A aggregation. In this study, we employed the vapor-liquid-solid (VLS) growth mechanism to grow Si NWs using Au nanoparticles as catalysts in a plasma-enhanced chemical vapor deposition (PECVD) system. Subsequently, these Si NWs were transferred to a phosphoric acid buffer solution (PBS). We found that Si NWs significantly reduced cell death in PC12 cells (rat adrenal pheochromocytoma cells) induced by A oligomers via double staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescein diacetate/propyl iodide (FDA/PI). Most importantly, pre-incubated Si NWs largely prevented A oligomer-induced PC12 cell death, suggesting that Si NWs exerts an anti-A neuroprotective effect by inhibiting A aggregation. The analysis of Fourier Transform Infrared (FTIR) results demonstrates that Si NWs reduce the toxicity of fibrils and oligomers by intervening in the formation of -sheet structures, thereby protecting the viability of nerve cells. Our findings suggest that Si NWs may be a potential therapeutic agent for AD by protecting neuronal cells from the toxicity of A.
Oleocanthal Protects C2C12 Myotubes against the Pro-Catabolic and Anti-Myogenic Action of Stimuli Able to Induce Muscle Wasting
De Stefanis D, Balestrini A and Costelli P
Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.
Inferior Frontal Sulcal Hyperintensities on Brain MRI Are Associated with Amyloid Positivity beyond Age-Results from the Multicentre Observational DELCODE Study
Dörner M, Seebach K, Heneka MT, Menze I, von Känel R, Euler S, Schreiber F, Arndt P, Neumann K, Hildebrand A, John AC, Tyndall A, Kirchebner J, Tacik P, Jansen R, Grimm A, Henneicke S, Perosa V, Meuth SG, Peters O, Hellmann-Regen J, Preis L, Priller J, Spruth EJ, Schneider A, Fliessbach K, Wiltfang J, Jessen F, Rostamzadeh A, Glanz W, Schulze JB, Schiebler SLF, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Laske C, Munk MH, Spottke A, Roy-Kluth N, Wagner M, Frommann I, Lüsebrink F, Dechent P, Hetzer S, Scheffler K, Kleineidam L, Stark M, Schmid M, Ersözlü E, Brosseron F, Ewers M, Schott BH, Düzel E, Ziegler G, Mattern H, Schreiber S and Bernal J
Inferior frontal sulcal hyperintensities (IFSHs) on fluid-attenuated inversion recovery (FLAIR) sequences have been proposed to be indicative of glymphatic dysfunction. Replication studies in large and diverse samples are nonetheless needed to confirm them as an imaging biomarker. We investigated whether IFSHs were tied to Alzheimer's disease (AD) pathology and cognitive performance. We used data from 361 participants along the AD continuum, who were enrolled in the multicentre DELCODE study. The IFSHs were rated visually based on FLAIR magnetic resonance imaging. We performed ordinal regression to examine the relationship between the IFSHs and cerebrospinal fluid-derived amyloid positivity and tau positivity (Aβ42/40 ratio ≤ 0.08; pTau181 ≥ 73.65 pg/mL) and linear regression to examine the relationship between cognitive performance (i.e., Mini-Mental State Examination and global cognitive and domain-specific performance) and the IFSHs. We controlled the models for age, sex, years of education, and history of hypertension. The IFSH scores were higher in those participants with amyloid positivity (OR: 1.95, 95% CI: 1.05-3.59) but not tau positivity (OR: 1.12, 95% CI: 0.57-2.18). The IFSH scores were higher in older participants (OR: 1.05, 95% CI: 1.00-1.10) and lower in males compared to females (OR: 0.44, 95% CI: 0.26-0.76). We did not find sufficient evidence linking the IFSH scores with cognitive performance after correcting for demographics and AD biomarker positivity. IFSHs may reflect the aberrant accumulation of amyloid β beyond age.
Chronic Traumatic Encephalopathy as the Course of Alzheimer's Disease
Pszczołowska M, Walczak K, Miśków W, Antosz K, Batko J, Kurpas D and Leszek J
This editorial investigates chronic traumatic encephalopathy (CTE) as a course of Alzheimer's disease (AD). CTE is a debilitating neurodegenerative disease that is the result of repeated mild traumatic brain injury (TBI). Many epidemiological studies show that experiencing a TBI in early or middle life is associated with an increased risk of dementia later in life. Chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD) present a series of similar neuropathological features that were investigated in this work like recombinant tau into filaments or the accumulation and aggregation of Aβ protein. However, these two conditions differ from each other in brain-blood barrier damage. The purpose of this review was to evaluate information about CTE and AD from various articles, focusing especially on new therapeutic possibilities for the improvement in cognitive skills.
Effect of Terpenes: Verifying Modes of Action Using Molecular Docking, Drug-Induced Transcriptomes, and Diffusion Network Analyses
Park M, Yi JM, Kim NS, Lee SY and Lee H
We characterized the therapeutic biological modes of action of several terpenes in F.A Wolf (PC) and proposed a broad therapeutic mode of action for PC. Molecular docking and drug-induced transcriptome analysis were performed to confirm the pharmacological mechanism of PC terpene, and a new analysis method, namely diffusion network analysis, was proposed to verify the mechanism of action against Alzheimer's disease. We confirmed that the compound that exists only in PC has a unique mechanism through statistical-based docking analysis. Also, docking and transcriptomic analysis results could reflect results in clinical practice when used complementarily. The detailed pharmacological mechanism of PC was confirmed by constructing and analyzing the Alzheimer's disease diffusion network, and the antioxidant activity based on microglial cells was verified. In this study, we used two bioinformatics approaches to reveal PC's broad mode of action while also using diffusion networks to identify its detailed pharmacological mechanisms of action. The results of this study provide evidence that future pharmacological mechanism analysis should simultaneously consider complementary docking and transcriptomics and suggest diffusion network analysis, a new method to derive pharmacological mechanisms based on natural complex compounds.
A Molecular Perspective and Role of NAD in Ovarian Aging
Ahmed M, Riaz U, Lv H and Yang L
The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD biology, which actively consume NAD in their enzymatic activities. In recent years, NAD has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.
Transcranial Magneto-Acoustic Stimulation Protects Synaptic Rehabilitation from Amyloid-Beta Plaques via Regulation of Microglial Functions
Zhang C, Tan R, Zhou X, Wang R, Wang X, Ma R, Chu F, Li Y, Yin T and Liu Z
Transcranial magneto-acoustic stimulation (TMAS), which is characterized by high spatiotemporal resolution and high penetrability, is a non-invasive neuromodulation technology based on the magnetic-acoustic coupling effect. To reveal the effects of TMAS treatment on amyloid-beta (Aβ) plaque and synaptic plasticity in Alzheimer's disease, we conducted a comparative analysis of TMAS and transcranial ultrasound stimulation (TUS) based on acoustic effects in 5xFAD mice and BV2 microglia cells. We found that the TMAS-TUS treatment effectively reduced amyloid plaque loads and plaque-associated neurotoxicity. Additionally, TMAS-TUS treatment ameliorated impairments in long-term memory formation and long-term potentiation. Moreover, TMAS-TUS treatment stimulated microglial proliferation and migration while enhancing the phagocytosis and clearance of Aβ. In 5xFAD mice with induced microglial exhaustion, TMAS-TUS treatment-mediated Aβ plaque reduction, synaptic rehabilitation improvement, and the increase in phospho-AKT levels were diminished. Overall, our study highlights that stimulation of hippocampal microglia by TMAS treatment can induce anti-cognitive impairment effects via PI3K-AKT signaling, providing hope for the development of new strategies for an adjuvant therapy for Alzheimer's disease.
The Role of Structural Variants in the Genetic Architecture of Parkinson's Disease
Miano-Burkhardt A, Alvarez Jerez P, Daida K, Bandres Ciga S and Billingsley KJ
Parkinson's disease (PD) significantly impacts millions of individuals worldwide. Although our understanding of the genetic foundations of PD has advanced, a substantial portion of the genetic variation contributing to disease risk remains unknown. Current PD genetic studies have primarily focused on one form of genetic variation, single nucleotide variants (SNVs), while other important forms of genetic variation, such as structural variants (SVs), are mostly ignored due to the complexity of detecting these variants with traditional sequencing methods. Yet, these forms of genetic variation play crucial roles in gene expression and regulation in the human brain and are causative of numerous neurological disorders, including forms of PD. This review aims to provide a comprehensive overview of our current understanding of the involvement of coding and noncoding SVs in the genetic architecture of PD.
Dual Role of NMDAR Containing NR2A and NR2B Subunits in Alzheimer's Disease
Raïch I, Lillo J, Rebassa JB, Capó T, Cordomí A, Reyes-Resina I, Pallàs M and Navarro G
Alzheimer's disease (AD) is the main cause of dementia worldwide. Given that learning and memory are impaired in this pathology, NMDA receptors (NMDARs) appear as key players in the onset and progression of the disease. NMDARs are glutamate receptors, mainly located at the post-synapse, which regulate voltage-dependent influx of calcium into the neurons. They are heterotetramers, and there are different subunits that can be part of the receptors, which are usually composed of two obligatory GluN1 subunits plus either two NR2A or two NR2B subunits. NR2A are mostly located at the synapse, and their activation is involved in the expression of pro-survival genes. Conversely, NR2B are mainly extrasynaptic, and their activation has been related to cell death and neurodegeneration. Thus, activation of NR2A and/or inactivation of NR2B-containing NMDARS has been proposed as a therapeutic strategy to treat AD. Here, we wanted to investigate the main differences between both subunits signalling in neuronal primary cultures of the cortex and hippocampus. It has been observed that Aβ induces a significant increase in calcium release and also in MAPK phosphorylation signalling in NR2B-containing NMDAR in cortical and hippocampal neurons. However, while NR2A-containing NMDAR decreases neuronal death and favours cell viability after Aβ treatment, NR2B-containing NMDAR shows higher levels of cytotoxicity and low levels of neuronal survival. Finally, it has been detected that NMDAR has no effect on pTau axonal transport. The present results demonstrate a different role between GluNA and GluNB subunits in neurodegenerative diseases such as Alzheimer's.
A Nonlinear Relation between Body Mass Index and Long-Term Poststroke Functional Outcome-The Importance of Insulin Resistance, Inflammation, and Insulin-like Growth Factor-Binding Protein-1
Gadd G, Åberg D, Wall A, Zetterberg H, Blennow K, Jood K, Jern C, Isgaard J, Svensson J and Åberg ND
Both high serum insulin-like growth factor-binding protein-1 (s-IGFBP-1) and insulin resistance (IR) are associated with poor functional outcome poststroke, whereas overweight body mass index (BMI; 25-30) is related to fewer deaths and favorable functional outcome in a phenomenon labeled "the obesity paradox". Furthermore, IGFBP-1 is inversely related to BMI, in contrast to the linear relation between IR and BMI. Here, we investigated s-IGFBP-1 and IR concerning BMI and 7-year poststroke functional outcome. We included 451 stroke patients from the Sahlgrenska Study on Ischemic Stroke (SAHLSIS) with baseline measurements of s-IGFBP1, homeostasis model assessment of IR (HOMA-IR), BMI (categories: normal-weight (8.5-25), overweight (25-30), and obesity (>30)), and high-sensitivity C-reactive protein (hs-CRP) as a measure of general inflammation. Associations with poor functional outcome (modified Rankin scale [mRS] score: 3-6) after 7 years were evaluated using multivariable binary logistic regression, with overweight as reference due to the nonlinear relationship. Both normal-weight (odds-ratio [OR] 2.32, 95% confidence interval [CI] 1.30-4.14) and obese (OR 2.25, 95% CI 1.08-4.71) patients had an increased risk of poor functional outcome, driven by deaths only in the normal-weight. In normal-weight, s-IGFBP-1 modestly attenuated (8.3%) this association. In the obese, the association was instead attenuated by HOMA-IR (22.4%) and hs-CRP (10.4%). Thus, a nonlinear relation between BMI and poor 7-year functional outcome was differently attenuated in the normal-weight and the obese.
Role of Calcitriol and Vitamin D Receptor () Gene Polymorphisms in Alzheimer's Disease
Jeong SP, Sharma N and An SSA
Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) buildup and neuronal degeneration. An association between low serum vitamin D levels and an increased risk of AD has been reported in several epidemiological studies. Calcitriol (1,25-dihydroxycholecalciferol) is the active form of vitamin D, and is generated in the kidney and many other tissues/organs, including the brain. It is a steroid hormone that regulates important functions like calcium/phosphorous levels, bone mineralization, and immunomodulation, indicating its broader systemic significance. In addition, calcitriol confers neuroprotection by mitigating oxidative stress and neuroinflammation, promoting the clearance of Aβ, myelin formation, neurogenesis, neurotransmission, and autophagy. The receptors to which calcitriol binds (vitamin D receptors; VDRs) to exert its effects are distributed over many organs and tissues, representing other significant roles of calcitriol beyond sustaining bone health. The biological effects of calcitriol are manifested through genomic (classical) and non-genomic actions through different pathways. The first is a slow genomic effect involving nuclear VDR directly affecting gene transcription. The association of AD with gene polymorphisms relies on the changes in vitamin D consumption, which lowers expression, protein stability, and binding affinity. It leads to the altered expression of genes involved in the neuroprotective effects of calcitriol. This review summarizes the neuroprotective mechanism of calcitriol and the role of polymorphisms in AD, and might help develop potential therapeutic strategies and markers for AD in the future.
Supplementation Could Reverse the Learning and Memory Impairment and m6A Methylation Modification Decrease Caused by 27-Hydroxycholesterol in Mice
Sun X, Zhou C, Ju M, Feng W, Guo Z, Qi C, Yang K and Xiao R
The abnormality in N6-methyladenosine (m6A) methylation is involved in the course of Alzheimer's disease (AD), while the intervention of 27-Hydroxycholesterol (27-OHC) can affect the m6A methylation modification in the brain cortex. Disordered gut microbiota is a key link in 27-OHC leading to cognitive impairment, and further studies have found that the abundance of in the gut is significantly reduced under the intervention of 27-OHC. This study aims to investigate the association of 27-OHC, in the gut, and brain m6A modification in the learning and memory ability injury. In this study, 9-month-old male C57BL/6J mice were treated with antibiotic cocktails for 6 weeks to sweep the intestinal flora, followed by 27-OHC or normal saline subcutaneous injection, and then or normal saline gavage were applied to the mouse. The 27-OHC level in the brain, the gut barrier function, the m6A modification in the brain, and the memory ability were measured. From the results, we observed that 27-OHC impairs the gut barrier function, causing a disturbance in the expression of m6A methylation-related enzymes and reducing the m6A methylation modification level in the brain cortex, and finally leads to learning and memory impairment. However, supplementation could reverse the negative effects mentioned above. This study suggests that 27-OHC-induced learning and memory impairment might be linked to brain m6A methylation modification disturbance, while , as a probiotic with great potential, could reverse the damage caused by 27-OHC. This research could help reveal the mechanism of 27-OHC-induced neural damage and provide important scientific evidence for the future use of in neuroprotection.
Prenylated Flavonoids of the Moraceae Family: A Comprehensive Review of Their Biological Activities
Morante-Carriel J, Živković S, Nájera H, Sellés-Marchart S, Martínez-Márquez A, Martínez-Esteso MJ, Obrebska A, Samper-Herrero A and Bru-Martínez R
Prenylated flavonoids (PFs) are natural flavonoids with a prenylated side chain attached to the flavonoid skeleton. They have great potential for biological activities such as anti-diabetic, anti-cancer, antimicrobial, antioxidant, anti-inflammatory, enzyme inhibition, and anti-Alzheimer's effects. Medicinal chemists have recently paid increasing attention to PFs, which have become vital for developing new therapeutic agents. PFs have quickly developed through isolation and semi- or full synthesis, proving their high value in medicinal chemistry research. This review comprehensively summarizes the research progress of PFs, including natural PFs from the Moraceae family and their pharmacological activities. This information provides a basis for the selective design and optimization of multifunctional PF derivatives to treat multifactorial diseases.
Assessment of the Correlation and Diagnostic Accuracy between Cerebrospinal Fluid and Plasma Alzheimer's Disease Biomarkers: A Comparison of the Lumipulse and Simoa Platforms
Dakterzada F, Cipriani R, López-Ortega R, Arias A, Riba-Llena I, Ruiz-Julián M, Huerto R, Tahan N, Matute C, Capetillo-Zarate E and Piñol-Ripoll G
We compared the clinical and analytical performance of Alzheimer's disease (AD) plasma biomarkers measured using the single-molecule array (Simoa) and Lumipulse platforms. We quantified the plasma levels of amyloid beta 42 (Aβ42), Aβ40, phosphorylated tau (Ptau181), and total tau biomarkers in 81 patients with mild cognitive impairment (MCI), 30 with AD, and 16 with non-AD dementia. We found a strong correlation between the Simoa and Lumipulse methods. Concerning the clinical diagnosis, Simoa Ptau181/Aβ42 (AUC 0.739, 95% CI 0.592-0.887) and Lumipulse Aβ42 and Ptau181/Aβ42 (AUC 0.735, 95% CI 0.589-0.882 and AUC 0.733, 95% CI 0.567-0.900) had the highest discriminating power. However, their power was significantly lower than that of CSF Aβ42/Aβ40, as measured by Lumipulse (AUC 0.879, 95% CI 0.766-0.992). Simoa Ptau181 and Lumipulse Ptau181/Aβ42 were the markers most consistent with the CSF Aβ42/Aβ40 status (AUC 0.801, 95% CI 0.712-0.890 vs. AUC 0.870, 95% CI 0.806-0.934, respectively) at the ≥2.127 and ≥0.084 cut-offs, respectively. The performance of the Simoa and Lumipulse plasma AD assays is weaker than that of CSF AD biomarkers. At present, the analysed AD plasma biomarkers may be useful for screening to reduce the number of lumbar punctures in the clinical setting.
Exploiting Natural Niches with Neuroprotective Properties: A Comprehensive Review
Moukham H, Lambiase A, Barone GD, Tripodi F and Coccetti P
Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.
The Role of Oxygen Homeostasis and the HIF-1 Factor in the Development of Neurodegeneration
Mitroshina EV and Vedunova MV
Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex.
Mackerel and Seaweed Burger as a Functional Product for Brain and Cognitive Aging Prevention
Cardoso C, Valentim J, Gomes R, Matos J, Rego A, Coelho I, Delgado I, Motta C, Castanheira I, Prates JAM, Bandarra NM and Afonso C
Most world countries are experiencing a remarkable aging process. Meanwhile, 50 million people are affected by Alzheimer's disease (AD) and related dementia and there is an increasing trend in the incidence of these major health problems. In order to address these, the increasing evidence suggesting the protective effect of dietary interventions against cognitive decline during aging may suggest a response to this challenge. There are nutrients with a neuroprotective effect. However, Western diets are poor in healthy n-3 polyunsaturated fatty acids (n-3 PUFAs), such as docosahexaenoic acid (DHA), iodine (I), and other nutrients that may protect against cognitive aging. Given DHA richness in chub mackerel (), high vitamin B9 levels in quinoa (), and I abundance in the seaweed , a functional hamburger rich in these nutrients by using these ingredients was developed and its formulation was optimized in preliminary testing. The effects of culinary treatment (steaming, roasting, and grilling vs. raw) and digestion on bioaccessibility were evaluated. The hamburgers had high levels of n-3 PUFAs in the range of 42.0-46.4% and low levels of n-6 PUFAs (6.6-6.9%), resulting in high n-3/n-6 ratios (>6). Bioaccessibility studies showed that the hamburgers could provide the daily requirements of eicosapentaenoic acid (EPA) + DHA with 19.6 g raw, 18.6 g steamed, 18.9 g roasted, or 15.1 g grilled hamburgers. Polyphenol enrichment by the seaweed and antioxidant activity were limited. The hamburgers contained high levels of Se and I at 48-61 μg/100 g ww and 221-255 μg/100 g ww, respectively. Selenium (Se) and I bioaccessibility levels were 70-85% and 57-70%, respectively, which can be considered high levels. Nonetheless, for reaching dietary requirements, considering the influence of culinary treatment and bioaccessibility, 152.2-184.2 g would be necessary to ensure daily Se requirements and 92.0-118.1 g for I needs.
Unlocking Preclinical Alzheimer's: A Multi-Year Label-Free In Vitro Raman Spectroscopy Study Empowered by Chemometrics
Lopez E, Etxebarria-Elezgarai J, García-Sebastián M, Altuna M, Ecay-Torres M, Estanga A, Tainta M, López C, Martínez-Lage P, Amigo JM and Seifert A
Alzheimer's disease is a progressive neurodegenerative disorder, the early detection of which is crucial for timely intervention and enrollment in clinical trials. However, the preclinical diagnosis of Alzheimer's encounters difficulties with gold-standard methods. The current definitive diagnosis of Alzheimer's still relies on expensive instrumentation and post-mortem histological examinations. Here, we explore label-free Raman spectroscopy with machine learning as an alternative to preclinical Alzheimer's diagnosis. A special feature of this study is the inclusion of patient samples from different cohorts, sampled and measured in different years. To develop reliable classification models, partial least squares discriminant analysis in combination with variable selection methods identified discriminative molecules, including nucleic acids, amino acids, proteins, and carbohydrates such as taurine/hypotaurine and guanine, when applied to Raman spectra taken from dried samples of cerebrospinal fluid. The robustness of the model is remarkable, as the discriminative molecules could be identified in different cohorts and years. A unified model notably classifies preclinical Alzheimer's, which is particularly surprising because of Raman spectroscopy's high sensitivity regarding different measurement conditions. The presented results demonstrate the capability of Raman spectroscopy to detect preclinical Alzheimer's disease for the first time and offer invaluable opportunities for future clinical applications and diagnostic methods.
The Impact of Dual-Tasks and Disease Severity on Posture, Gait, and Functional Mobility among People Living with Dementia in Residential Care Facilities: A Pilot Study
Jehu DA, Langston R, Sams R, Young L, Hamrick M, Zhu H and Dong Y
Gait speed and timed-up-and-go (TUG) predict cognitive decline, falls, and mortality. Dual-tasks may be useful in cognitive screening among people living with dementia (PWD), but more evidence is needed. This cross-sectional study aimed to compare single- and dual-task performance and determine the influence of dementia severity on dual-task performance and interference. Thirty PWD in two residential care facilities (Age: 81.3 ± 7.1 years; Montreal Cognitive Assessment: 10.4 ± 6.0 points) completed two trials of single- (feet apart) and dual-task posture (feet apart while counting backward), single- (walk 4 m) and dual-task gait (walk 4m while naming words), and single- (timed-up-and-go (TUG)), and dual-task functional mobility (TUG while completing a category task) with APDM inertial sensors. Dual-tasks resulted in greater sway frequency, jerk, and sway area; slower gait speed; greater double limb support; shorter stride length; reduced mid-swing elevation; longer TUG duration; reduced turn angle; and slower turn velocity than single-tasks ( < 0.05). Dual-task performance was impacted (reduced double limb support, greater mid-swing elevation), and dual-task interference (greater jerk, faster gait speed) was related to moderate-to-severe compared to mild PWD. Moderate-to-severe PWD had poorer dynamic stability and a reduced ability to appropriately select a cautious gait during dual-tasks than those with mild PWD, indicating the usefulness of dual-tasks for cognitive screening.
Special Issue 'Advances in Neurodegenerative Diseases Research and Therapy 2.0'
Mitra S
Neurodegenerative disorders (NDs) and the development of various therapeutic strategies to combat them have received increased attention in recent decades [...].
The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency
Kontoghiorghes GJ
The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.
Combination of Tramiprosate, Curcumin, and SP600125 Reduces the Neuropathological Phenotype in Familial Alzheimer Disease PSEN1 I416T Cholinergic-like Neurons
Gomez-Sequeda N, Jimenez-Del-Rio M and Velez-Pardo C
Familial Alzheimer's disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD. Here, we investigated the potential of combining tramiprosate (TM), curcumin (CU), and the JNK inhibitor SP600125 (SP) as a treatment for FAD. The study analyzed the individual and combined effects of these two natural agents and this pharmacological inhibitor on the accumulation of intracellular amyloid beta iAβ; hyperphosphorylated protein TAU at Ser/Thr; mitochondrial membrane potential (ΔΨ); generation of reactive oxygen species (ROS); oxidized protein DJ-1; proapoptosis proteins p-c-JUN at Ser/Ser, TP53, and cleaved caspase 3 (CC3); and deficiency in acetylcholine (ACh)-induced transient Ca influx response in cholinergic-like neurons (ChLNs) bearing the mutation I416T in presenilin 1 (PSEN1 I416T). We found that single doses of TM (50 μM), CU (10 μM), or SP (1 μM) were efficient at reducing some, but not all, pathological markers in PSEN 1 I416T ChLNs, whereas a combination of TM, CU, and SP at a high (50, 10, 1 μM) concentration was efficient in diminishing the iAβ, p-TAU Ser/Thr, DJ-1Cys-SO, and CC3 markers by -50%, -75%, -86%, and -100%, respectively, in PSEN1 I417T ChLNs. Although combinations at middle (10, 2, 0.2) and low (5, 1, 0.1) concentrations significantly diminished p-TAU Ser/Thr, DJ-1Cys-SO, and CC3 by -69% and -38%, -100% and -62%, -100% and -62%, respectively, these combinations did not alter the iAβ compared to untreated mutant ChLNs. Moreover, a combination of reagents at H concentration was able to restore the dysfunctional ACh-induced Ca influx response in PSEN 1 I416T. Our data suggest that the use of multitarget agents in combination with anti-amyloid (TM, CU), antioxidant (e.g., CU), and antiapoptotic (TM, CU, SP) actions might be beneficial for reducing iAβ-induced ChLN damage in FAD.
Adherence to Online Interventions for Family Caregivers of People With Dementia: A Meta-Analysis and Systematic Review
Atefi GL, Koh WQ, Kohl G, Seydavi M, Swift JK, Akbari M and de Vugt ME
Online interventions hold promise in supporting the well-being of family caregivers and enhancing the quality of care they provide for individuals with long-term or chronic conditions. However, dropout rates from support programs among specific groups of caregivers, such as caregivers of people with dementia, pose a challenge. Focused reviews are needed to provide more accurate insights and estimates in this specific research area.
Unraveling the Connection: Cholesterol, Calcium Signaling, and Neurodegeneration
Casas M and Dickson EJ
Cholesterol and calcium play crucial roles as integral structural components and functional signaling entities within the central nervous system. Disruption in cholesterol homeostasis has been linked to Alzheimer's, Parkinson's, and Huntington's Disease while alterations in calcium signaling is hypothesized to be a key substrate for neurodegeneration across many disorders. Despite the importance of regulated cholesterol and calcium homeostasis for brain health there has been an absence of research investigating the interdependence of these signaling molecules and how they can tune each other's abundance at membranes to influence membrane identity. Here, we discuss the role of cholesterol in shaping calcium dynamics in a neurodegenerative disorder that arises due to mutations in the lysosomal cholesterol transporter, Niemann Pick Type C1 (NPC1). We discuss the molecular mechanisms through which altered lysosomal cholesterol transport influences calcium signaling pathways through remodeling of ion channel distribution at organelle-organelle membrane contacts leading to neurodegeneration. This scientific inquiry not only sheds light on NPC disease but also holds implications for comprehending other cholesterol-associated neurodegenerative disorders.
Non-linear relationship of serum albumin-to-globulin ratio and cognitive function in American older people: a cross-sectional national health and nutrition examination survey 2011-2014 (NHANES) study
Yang H, Liao Z, Zhou Y, Gao Z and Mao Y
Inflammation and liver function are associated with cognitive decline and dementia. Little is known about the serum albumin-to-globulin ratio on cognitive function.
Disturbance in the protein landscape of cochlear perilymph in an Alzheimer's disease mouse model
Fukuda M, Okanishi H, Ino D, Ono K, Kawamura S, Wakai E, Miyoshi T, Sato T, Ohta Y, Saito T, Saido TC, Inohara H, Kanai Y and Hibino H
Hearing loss is a pivotal risk factor for dementia. It has recently emerged that a disruption in the intercommunication between the cochlea and brain is a key process in the initiation and progression of this disease. However, whether the cochlear properties can be influenced by pathological signals associated with dementia remains unclear. In this study, using a mouse model of Alzheimer's disease (AD), we investigated the impacts of the AD-like amyloid β (Aβ) pathology in the brain on the cochlea. Despite little detectable change in the age-related shift of the hearing threshold, we observed quantitative and qualitative alterations in the protein profile in perilymph, an extracellular fluid that fills the path of sound waves in the cochlea. Our findings highlight the potential contribution of Aβ pathology in the brain to the disturbance of cochlear homeostasis.
close chatgpt icon
ChatGPT

Enter your request.