Welcome to PsychiatryAI.com: [PubMed] - Psychiatry AI Latest

Personality

Deucravacitinib onset of action and maintenance of response in phase 3 plaque psoriasis trials
Korman NJ, Warren RB, Bagel J, Armstrong AW, Gooderham M, Strober B, Thaçi D, Morita A, Imafuku S, Foley P, Sofen H, Zheng M, Hippeli L, Kisa RM, Banerjee S and Blauvelt A
In the global phase 3 POETYK PSO-1 and PSO-2 trials, significantly greater proportions of deucravacitinib-treated patients met the coprimary endpoints (PASI 75, sPGA 0/1) at Week 16 versus placebo or apremilast-treated patients. This analysis evaluated onset of action and maintenance of response in patients randomized to deucravacitinib and placebo only.
Estimating the healthcare burden of Prurigo Nodularis in England: a CPRD database study
Bahloul D, Hudson R, Balogh O, Mathias E, Heywood B, Hubbuck E, Tavi J, Diribe O, McDonald R, Wiggins S and Bewley AP
Prurigo nodularis (PN) is a skin disease characterized by intensely itchy skin nodules and is associated with a significant healthcare resource utilization (HCRU). This study aimed to estimate the HCRU of patients in England with PN overall and moderate-to-severe PN (MSPN) in particular. This retrospective cohort study used data from the Clinical Practice Research Datalink and Hospital Episode Statistics in England. Patients with Mild PN (MiPN) were matched to patients with MSPN by age and gender for the primary analysis. Patients were enrolled in the study between 1st April 2007 and 1st March 2019. All-cause HCRU was calculated, including primary and secondary care contacts and costs (cost-year 2022). Of 23,522 identified patients, 8,933 met the inclusion criteria, with a primary matched cohort of 2,479 PN patients. During follow up, the matched cohort's primary care visits were 21.27 per patient year (PPY) for MSPN group and 11.35 PPY for MiPN group. Any outpatient visits were 10.72 PPY and 4.87 PPY in MSPN and MiPN groups, respectively. Outpatient dermatology visits were 1.96 PPY and 1.14 PPY in MSPN and MiPN groups, respectively. PN, especially MSPN, has a high HCRU burden in England, highlighting the need for new and improved disease management treatments.
Thermally induced changes in the profiles of phytocannabinoids and other bioactive compounds in Cannabis sativa L. inflorescences
Benes F, Binova Z, Zlechovcova M, Maly M, Stranska M and Hajslova J
Phytocannabinoids occurring in Cannabis Sativa L. are unique secondary metabolites possessing interesting pharmacological activities. In this study, the dynamics of thermally induced (60 and 120 °C) phytocannabinoid reactions in four cannabis varieties were investigated. Using UHPLC-HRMS/MS, 40 phytocannabinoids were involved in target analysis, and an additional 281 compounds with cannabinoid-like structures and 258 non-cannabinoid bioactive compounds were subjected to suspect screening. As expected, the key reaction was the decarboxylation of acidic phytocannabinoids. Nevertheless, the rate constants differed among cannabis varieties, documenting the matrix-dependence of this process. Besides neutral counterparts of acidic species, ́neẃ bioactive compounds such as hydroxyquinones were found in heated samples. In addition, changes in other bioactive compounds with both cannabinoid-like and non-cannabinoid structures were documented during cannabis heating at 120 °C. The data document the complexity of heat-induced processes and provide a further understanding of changes in bioactivities occurring under such conditions.
Analysis of unique volatile organic compounds in "Mianhua" made from wheat planted in arid alkaline land
Liu Y, Li M, Guo B, Song Q, Zhang Y, Sun Q and Li M
Hebei Province's Huanghua "Mianhua" is a province intangible cultural property made from arid alkaline wheat (AAW). This study aims to assess how different soil conditions affect the volatile organic compounds (VOCs) of "Mianhua" and identify distinct VOCs for land type discrimination. These findings will guide future research on AAW products, enhancing their processing and utilization. 51 VOCs in "Mianhua" from wheat samples grown in arid alkaline land and general land in Huanghua were analyzed by Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). The result of ANOVA, VOC fingerprint, T test, and OPLS-DA revealed VOCs differences based on planting environments. According to multivariate variance contribution rate analysis, most VOCs were more affected by the variety. Land type significantly influenced (E)-2-heptenal (75.3%), Butanol (60.6%), Propyl acetate (60.0%), ethyl pentanoate (45.5%), and ethyl acetate (44.4%). LDA progressively identified Butanol as the characteristic VOC to distinguish "Mianhua" between it made from AAW and general wheat (GW), with a classification accuracy of 75%.
Seasonal dynamics of the microbiota and nutritional composition in bee bread from Apis cerana and Apis mellifera colonies
Li JL, Li WL, Zhang J, Pang YT, Xiong J, Wu P, Wei BR, Li XJ, Huang Q, Tang QH, Zhao CH, Wang Q, Liu ZL, Chen Y, Dong ZX, Zhao YZ and Guo J
Bee bread is a product of honeybees, which collect and ferment pollen, that contains highly nutritious and easily digestible active substances. However, its nutritional composition varies significantly with fermentation strains and seasonal changes. To unveil the patterns of microbial community and nutritional component changes in bee bread across seasons, we employed high-throughput techniques to assess the diversity of bacteria and fungi in bee bread. The results indicated that the compositions of bacteria and fungi in bee bread undergo significant seasonal variation, with noticeable changes in the microbial diversity of bee bread from different bee species. Subsequently, metabolomic analysis revealed high activity of glycerophospholipid metabolism in bee bread. Furthermore, our analysis identifaied noteworthy differences in nutritional components, including pH values, sugar content, and free amino acid levels, in bee bread across different seasons.
Discovery and identification of natural alkaloids with potential to impact insulin resistance syndrome in Cyclocarya paliurus. (Batal) leaves by UPLC-QTOF-MS combined with HepG2 cells
Liang L, Liu Z, Xu W, Mao X and Wang Y
Cyclocarya paliurus (Batal.) leaves, which contain a range of bioactive compounds, have been used as a traditional Chinese medicine homologous food since ancient times. However, there is a paucity of literature on comprehensive studies of alkaloids in the leaves of Cyclocarya paliurus (Batal.). For the first time, this study aimed to discover and identify alkaloids extracted from Cyclocarya paliurus (Batal.) leaves by ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-QTOF-MS). A total of ten alkaloids have been identified from Cyclocarya paliurus (Batal.) leaves based on accurate mass spectra (mass accuracy, isotopic spacing and distribution) and comparison to fragmentation spectra reported in the literature. In vitro, alkaloids alleviated insulin resistance by increasing glucose consumption and glycogen content in insulin resistance HepG2 cells. The RNA-seq and western blotting results showed that alkaloids could upregulate the expression of phosphatidylinositol 3-kinase (PI3K), and increase the phosphorylation of insulin receptor protein kinase B (AKT). This study not only clarified the chemical constituents and revealed that diverse alkaloids also presented from Cyclocarya paliurus (Batal.) leaves, also, it will provide chemical information on potential compounds for developing new drugs.
Free Drawing to assess food consumption information in comparison with the Free Listing: An intracultural study in Brazil with adolescents and dairy products
Bidim MF, Egea MB, de Oliveira RBA, Klososki SJ, Soares EKB, Tavares Filho ER, Cruz AG and Pimentel TC
This study aimed to evaluate the Free Drawing method to assess food consumption information compared to the Free Listing method. Furthermore, the citation frequencies of dairy products consumed by adolescents were compared in Brazilian regions. Adolescents (14-17 years old, n = 265, n = 53 for each region, North, South, Northeast, Midwest, and Southeast regions) listed or drew the dairy products they consumed using Free Listing or Free Drawing. The contingency tables were constructed, and the cognitive saliency indexes (CSI) were calculated. Multiple Factor Analysis (MFA) was performed, and the RV indices were determined. The adolescents listed/drew 55 dairy products, grouped into 10 categories. The Free Listing method resulted in greater citation frequencies of dairy products. The Free Drawing method resulted in richer and more detailed information, with specifications of the type of product consumed within the category, flavor, type of packaging, and brand. The dairy products with the highest citation frequencies/CSI by adolescents were milk, cheese, and fermented milk. The South and Southeast regions observed greater citation frequencies and diversity of dairy products (prevalence in 6 categories). The CSI did not depend on the method, but it was affected by the region (p < 0.05). The sensory methods showed high similarity considering the categories of dairy products (RV = 0.80) and regions (RV = 0.79). It is concluded that the Free Drawing method proved to be an alternative to Free Listing for evaluating adolescents' consumption information of dairy products in an intracultural study in Brazil.
Starting with screening strains to construct synthetic microbial communities (SynComs) for traditional food fermentation
Jiang X, Peng Z and Zhang J
With the elucidation of community structures and assembly mechanisms in various fermented foods, core communities that significantly influence or guide fermentation have been pinpointed and used for exogenous restructuring into synthetic microbial communities (SynComs). These SynComs simulate ecological systems or function as adjuncts or substitutes in starters, and their efficacy has been widely verified. However, screening and assembly are still the main limiting factors for implementing theoretic SynComs, as desired strains cannot be effectively obtained and integrated. To expand strain screening methods suitable for SynComs in food fermentation, this review summarizes the recent research trends in using SynComs to study community evolution or interaction and improve the quality of food fermentation, as well as the specific process of constructing synthetic communities. The potential for novel screening modalities based on genes, enzymes and metabolites in food microbial screening is discussed, along with the emphasis on strategies to optimize assembly for facilitating the development of synthetic communities.
A comprehensive review on the recent trends in extractions, pretreatments and modifications of plant-based proteins
Ravindran N, Kumar Singh S and Singha P
Plant-based proteins offer sustainable and nutritious alternatives to animal proteins with their techno-functional attributes influencing product quality and designer food development. Due to the inherent complexities of plant proteins, proper extraction and modifications are vital for their effective utilization. This review highlights the emerging sources of plant-based proteins, and the recent statistics of the techniques employed for pretreatment, extraction, and modifications. The pretreatment, extraction and modification approach to modify plant proteins have been classified, addressed, and the recent applications of such methodologies are duly indicated. Furthermore, this study furnishes novel perspectives regarding the potential impacts of emerging technologies on the intricate dynamics of plant proteins. A thorough review of 100 articles (2018-2024) shows the researchers' keen interest in investigating novel plant proteins and how they can be used; seeds being the main source for protein extraction, followed by legumes. Use of by-products as a protein source is increasing rapidly, which is noteworthy. Protein studies still lack knowledge on protein fraction, antinutrients, and pretreatments. The use of physical methods and their combination with other techniques are increasing for effective and environmentally friendly extraction and modification of plant proteins. Several studies explore the effect of protein changes on their function and nutrition, especially with a goal of replacing ingredients with plant proteins that have improved or enhanced qualities. However, the next step is to investigate the sophisticated modification methods for deeper insights into food safety and toxicity.
Flavor release from walnut kernels in an in-vitro mastication model with decoupled oral parameters
Jia Y, Li W, Zheng M, Zheng C and Zhou Q
Consumer preferences for walnut products are largely determined by the flavors released during mastication. In this study, a peeled walnut kernel (PWK) model was established with oral parameters decoupled using a Hutchings 3D model. The model explored in vitro variations using head-space solid-phase microextraction-gas chromatography-mass spectrometry and intelligent sensory techniques. The fracture strength, hardness, particle size, adhesiveness, springiness, gumminess, and chewiness were significantly reduced during mastication. We identified 61 volatile compounds and found that 2,5-dimethyl-3-ethylpyrazine is a key component, releasing predominantly baking and milky notes. Glutamic acid, alanine, arginine, and sucrose were identified as the key compounds in taste perception. The method can help establish a mastication model for nuts and facilitate breakthroughs in the development of walnut products and processing methods.
Assessment of protein and phospholipid bioaccessibility in ultrafiltered buttermilk cheese using TIM-1 in vitro gastrointestinal methods
Krebs L, Verhoeven J, Verbruggen S, Lesar A, Meddah R, Blouin M, Venema K, Chamberland J and Brisson G
To meet the high consumer demand, butter production has increased over the last few years. As a result, the buttermilk (BM) co-produced volumes require new ways of adding value, such as in cheese manufacturing. However, BM use in cheese milk negatively influences the cheesemaking process (e.g., altered coagulation properties) and the product's final quality (e.g., high moisture content). The concentration of BM by ultrafiltration (UF) could potentially facilitate its use in cheese manufacturing through an increased protein content while maintaining the milk salt balance. Simultaneously, little is known about the digestion of UF BM cheese. Therefore, this study aimed to characterize the impact of UF BM on cheese manufacture, its structure, and its behavior during in vitro digestion. A 2-fold UF concentrated BM was used for cheese manufacture (skim milk [SM] - control). Compositional, textural, and microstructural analyses of cheeses were first conducted. In a second step, the cheeses were fed into an in vitro TNO gastrointestinal digestion model (TIM-1) of the stomach and small intestine and protein and phospholipid (PL) bioaccessibility was studied. The results showed that UF BM cheese significantly differed from SM cheese regarding its composition, hardness (p < 0.05) and microstructure. However, in TIM-1, UF BM and SM cheeses showed similar digestion behavior as a percentage of protein and PL intake. Despite relatively more non-digested and non-absorbed PL in the ileum efflux of UF BM cheese, the initially higher PL concentration contributes to an enhanced nutritional value compared to SM cheese. To our knowledge, this study is the first to compare the bioaccessibility of proteins and PL from UF BM and SM cheeses.
Digestion behavior of plant-based meat analogs with anisotropic fibrous structure in a semi-dynamic gastric digestion system
Chen J, Wu K, Guo W, Guo J, Wang J and Yang X
Plant-based meat analogs have increasingly attracted the attention of the food industry in recent years. However, the digestion behavior of this innovative solid food in human stomach is poorly understood. In this study, plant-based meat analogs with different internal structures were prepared with/without high-moisture extrusion technology and at different temperatures. A semi-dynamic gastric digestion system which involves the mimic processes of the secretion of gastric juice and the gastric emptying was applied. After extrusion treatment at high temperature (150 ℃), the EHT had the highest anisotropic index (H/H=1.90) and an ideal meat-like structure. It was found that particle disintegration and swelling simultaneously occurred in the bolus of the EHT but not in the sample without extrusion treatment (the HLT) in the early stage of gastric digestion. This difference might be attributed to the compact and well-arranged anisotropic structure of the EHT resulting from the extrusion, and leads to difficult enzymatic hydrolyzation unless the particles swell and unfold the polymer chains. The difficulty in particle disintegration in the EHT during gastric digestion is the consequence of the relatively slow gastric emptying rate and the decrease of protein degradation. As a result, the EHT which underwent extrusion treatment at high temperature and possessed the best anisotropic fibrous structure exhibited the slowest gastric digestion. This novel solid food shows good potential as a desired nutritional food for people on diet.
In situ interaction of pea peptides and bile salts under in vitro digestion: Potential impact on lipolysis
Herrera AW, Bellesi FA and Pilosof AMR
The present work evaluated how a native pea protein isolate (PPI) affects the key roles carried out by bile salts (BS) in lipid digestion by means of the in vitro static INFOGEST protocol. Two gastric residence times were evaluated (10 and 60 min), and then the peptides obtained (GPPP) were mixed with BS at physiological concentration in simulated intestinal fluid to understand how they interact with BS both at the bulk and at the interface. Both GPPP give rise to a film with a predominant viscous character that does not constitute a barrier to the penetration of BS, but interact with BS in the bulk duodenal fluid. When the peptides flushing from the stomach after the different gastric residence times undergo duodenal digestion, it was found that for the longer gastric residence time the percentage of soluble fraction in the duodenal phase, that perform synergistically with BS micelles, was twice that of the lower residence time, leading to an increase in the solubilization of oleic acid. These results finally lead to a greater extent of lipolysis of olive oil emulsions. This work demonstrates the usefulness of in vitro models as a starting point to study the influence of gastric residence time of pea protein on its interaction with BS, affecting lipolysis. Pea proteins were shown to be effective emulsifiers that synergistically perform with BS improving the release and bioaccessibility of bioactive lipids as olive oil.
Changes of structure properties and potential allergenicity of ovalbumin under high hydrostatic pressures
Yang J, Kuang H, Kumar N, Song J and Li Y
Egg proteins, notably ovalbumin (OVA), contribute to a prevalent form of food allergy, particularly in children. This study aims to investigate the impact of high hydrostatic pressure (HHP) treatment at varying levels (300, 400, 500, and 600 MPa) on the molecular structure and allergenicity of OVA. The structure of HHP-treated OVA was assessed through fluorescence spectroscopy, circular dichroism spectroscopy, and molecular dynamics (MD) simulation. HHP treatment (600 MPa) altered OVA structures, such as α-helix content decreased from 28.07 % to 19.47 %, and exogenous fluorescence intensity increased by 8.8 times compared to that of the native OVA. The free sulfhydryl groups and zeta potential value were also increased with HHP treatment (600 MPa). ELISA analysis and MD simulation unveiled a noteworthy reduction in the allergenicity of OVA when subjected to 600 MPa for 10 min. Overall, this study suggests that the conformational changes in HHP-treated OVA contribute to its altered allergenicity.
Targeted microbial collaboration to enhance key flavor metabolites by inoculating Clostridium tyrobutyricum and Saccharomyces cerevisiae in the strong-flavor Baijiu simulated fermentation system
Qiu F, Li W, Chen X, Du B, Li X and Sun B
Ethyl hexanoate and ethyl butyrate are indispensable flavor metabolites in strong-flavor Baijiu (SFB), but batch production instability in fermenting grains can reduce the quality of distilled Baijiu. Biofortification of the fermentation process by designing a targeted microbial collaboration pattern is an effective method to stabilize the quality of Baijiu. In this study, we explored the metabolism under co-culture liquid fermentation with Clostridium tyrobutyricum DB041 and Saccharomyces cerevisiae YS219 and investigated the effects of inoculation with two functional microorganisms on physicochemical factors, flavor metabolites, and microbial communities in solid-state simulated fermentation of SFB for the first time. The headspace solid-phase microextraction-gas chromatography-mass spectrometry results showed that ethyl butyrate and ethyl hexanoate significantly increased in fermented grain. High-throughput sequencing analysis showed that Pediococcus, Lactobacillus, Weissella, Clostridium_sensu_stricto_12, and Saccharomyces emerged as the dominant microorganisms at the end of fermentation. Co-occurrence analysis showed that ethyl hexanoate and ethyl butyrate were significantly correlated (|r| > 0.5, P < 0.05) with a cluster of interactions dominated by lactic acid bacteria (Pediococcus, Lactobacillus, Weissella, and Lactococcus), which was driven by the functional C. tyrobutyricum and S. cerevisiae. Mantel test showed that moisture and reducing sugars were the main physicochemical factor affecting microbial collaboration (|r| > 0.7, P < 0.05). Taken together, the collaborative microbial pattern of inoculation with C. tyrobutyricum and S. cerevisiae showed positive results in enhancing typical flavor metabolites and the synergistic effects of microorganisms in SFB.
Exploring factors influencing the levels of biogenic amines in wine and microbiological strategies for controlling their occurrence in winemaking
Moreira L, Milheiro J, Filipe-Ribeiro L, Cosme F and Nunes FM
Fermented beverages, including wine, can accumulate high concentrations of biogenic amines (BAs), which can pose potential health risks. BAs are produced by various yeasts and lactic acid bacteria (LAB) during winemaking. LAB are the main contributors to the formation of histamine and tyramine, the most toxic and food safety relevant biogenic amines. Numerous factors, ranging from agricultural and oenological practices to sanitation conditions, can contribute to the formation of BAs in wines. Moreover, organic and biodynamic wines impose limitations on the use of common food additives employed to control the proliferation of native and spoilage microorganisms during vinification and storage. To mitigate histamine production, commercial starter cultures incapable of synthesising histamine have been effectively utilised to reduce wine histamine content. Alternative fermentative microorganisms are currently under investigation to enhance the safety, quality, and typicity of wines, including indigenous LAB, non-Saccharomyces yeasts, and BAs degrading strains. Furthermore, exploration of extracts from BAs-degrading microorganisms and their purified enzymes has been undertaken to reduce BAs levels in wines. This review highlights microbial contributors to BAs in wines, factors affecting their growth and BA production, and alternative microorganisms that can degrade or avoid BAs. The aim is to lessen reliance on additives, providing consumers with safer wine choices.
Investigation of the formation of furfural compounds in apple products treated with pasteurization and high pressure processing
Gao Q, Wang Y, Li Y, Hou J, Liang Y and Zhang Z
The thermal treatment carried out in the processing of apple products is very likely to induce Maillard reaction to produce furfurals, which have raised toxicological concerns. This study aimed to elucidate the formation of furfural compounds in apple products treated with pasteurization and high pressure processing (HPP). The method for simultaneous determination of five furfural compounds including 5-hydroxymethyl-2-furfural (5-HMF), furfural (F), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), 2-acetylfuran (FMC), and 5-Methyl-2-furfural (MF) using high performance liquid chromatography equipped with diode array detector (HPLC-DAD) was successfully developed and validated. All five furfurals exhibited an increasing trend after the pasteurization treatment of apple clear juice, cloudy juice, and puree. 5-HMF, F, FMC, and MF were increased significantly during the precooking of apple puree. Whereas there was no significant change in the furfurals formation after apple products treated with high pressure processing (HPP) with 300 MPa and 15 min. Based on the variation of the fructose, glucose and sucrose detected in apple products after thermal treatment, it revealed that the saccharides and thermal treatment have great effect on the furfural compounds formation. The commercial fruit juice samples with different treatments and fruit puree samples treated with pasteurization were also analyzed. Five furfurals were detected more frequently in the fruit juice samples treated with pasteurization or ultra-high temperature instantaneous sterilization (UHT) than those treated with HPP. 5-HMF and FMC were detected in all fruit puree samples treated with pasteurization, followed by F, MF, and HDMF with the detection rate of 79.31 %, 72.41 %, and 51.72 %. The results could provide a reference for risk assessment of furfural compounds and dietary guidance of fruit products for human, especially for infants and young children. Moreover, moderate HPP treatment with 300 MPa and 15 min would be a worthwhile alternative processing technology in the fruit juice and puree production to reduce the formation of furfural compounds.
The protective effects of Kefir extract (KE) on intestinal damage in larval zebrafish induced by Oxytetracycline: Insights into intestinal function, morphology, and molecular mechanisms
Qiu Y, Yan F, Yu H, Li H, Xia S, Zhang J and Zhu J
The antibiotic oxytetracycline (OTC) can be detected in contemporary natural aquatic environments and has been implicated in causing intestinal damage in humans exposed to OTC-contaminated food or water. The irreversible damage caused by high concentrations of OTC to the intestine suggests that treatment through dietary means could still be necessary. This study proved the effectiveness of kefir extract (KE) in reversing intestinal damage caused by oxytetracycline (OTC) exposure. Following a 24-hour KE treatment subsequent to OTC exposure from 3 to 8 days post-fertilization of zebrafish larvae, molecular-level and microbiomic assessments revealed significant improvements. These included reduced expression of proinflammatory factors (IL-8 and IL-1β), increased antioxidant levels, and reversed unhealthy distribution of intestinal microbiota. Furthermore, KE supplementation showed potential in enhancing intestinal motility in the experiment of Nile red staining and fluorescent microbead transit. However, histological analysis showed that this short-term treatment with KE only partially reversed the intestinal morphological changes induced by OTC, suggesting that a longer treatment period might be necessary for complete restoration.
An insight into trichomes-deficiency and trichomes-rich black teas by comparative metabolomics: The impact of oxidized trichomes on metabolic profiles and infusion color
Long P, Su S, Wen M, Liu X, Han Z, Ke JP, Zhou Y, Zhu M, Cheng Y, Shao Y, Wan X and Zhang L
Tea trichomes were regarded as an essential evaluation index for reflecting tea flavor quality in terms of aroma and influence on infusion color. This study reveals the impact of golden oxidized trichomes on the color, volatile and non-volatile metabolites of black teas through comparative metabolomics combined quantitative analysis on hongbiluo (trichomes-deficiency black teas), hongjinluo (trichomes-rich black teas), and trichomes (from hongjinluo). Forty-six volatile components were detected using headspace solid-phase microextraction gas chromatography-mass spectrometry, while the results suggested that the contribution of trichomes to black teas is limited. A total of 60 marker non-volatile compounds were identified, including catechins, catechin oxidation products, flavonoid glycosides, organic acids, hydrolysable tannins and amino acids. Notably, p-coumaroyl-kaempferol glucosides, and catechin dimers demonstrated high levels in independent trichomes and showed a positive correlation with the brightness and yellow hue of black tea infusions, specifically kaempferol 3-O-di-(p-coumaroyl)-hexoside. Furthermore, results from fractional extraction analysis of separated trichomes provided that N-ethyl-2-pyrrolidinone-substituted epicatechin gallates, acylated kaempferol glycosides, and chromogenic catechins dimers, such as theaflavins, were primary color contributors in oxidized trichomes. Especially, we found that epicatechin gallate (ECG) and its derivates, 3'-O-methyl-ECG and N-ethyl-2-pyrrolidinone-substituted ECG, highly accumulated in trichomes, which may be associated with the varieties of hongbiluo and hongjinluo black teas. Eventually, addition tests were applied to verify the color contribution of trichome mixtures. Our findings employed comprehensive information revealing that golden oxidized trichomes contributed significantly to the brightness and yellow hue of black tea infusion, but their contribution to the aroma and metabolic profile is limited. These findings may contribute to the effective modulation of the infusion color during black tea production by regulating the proportion of tea trichomes or screening trichomes-rich or deficiency varieties.
The difference analysis of physicochemical indexes and volatile flavor compounds of chili oil prepared from different varieties of chili pepper
Li D, Chu B, Li B, Wang X, Chen X and Gu Q
Because of its peculiar flavor, chili oil is widely used in all kinds of food and is welcomed by people. Chili pepper is an important raw material affecting its quality, and commercial chili oil needs to meet various production needs, so it needs to be made with different chili peppers. However, the current compounding method mainly relies on the experience of professionals and lacks the basis of objective numerical analysis. In this study, the chroma and capsaicinoids of different chili oils were analyzed, and then the volatile components were determined by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion migration spectrometer (GC-IMS) and electronic nose (E-nose). The results showed that Zidantou chili oil had the highest L*, b*, and color intensity (ΔE) (52.76 ± 0.52, 88.72 ± 0.89, and 118.84 ± 1.14), but the color was tended to be greenyellow. Xinyidai chili oil had the highest a* (65.04 ± 0.2). But its b* and L* were relatively low (76.17 ± 0.29 and 45.41 ± 0.16), and the oil was dark red. For capsaicinoids, Xiaomila chili oil had the highest content of capsaicinoids was 2.68 ± 0.07 g/kg, Tianjiao chili oil had the lowest content of capsaicinoids was 0.0044 ± 0.0044 g/kg. Besides, 96 and 54 volatile flavor substances were identified by GC-MS and GC-IMS respectively. And the main volatile flavor substances of chili oil were aldehydes, alcohols, ketones, and esters. A total of 11 key flavor compounds were screened by the relative odor activity value (ROAV). Moguijiao chili oil and Zidantou chili oil had a prominent grass aroma because of hexanal, while Shizhuhong chili oil, Denglongjiao chili oil, Erjingtiao chili oil, and Zhoujiao chili oil had a prominent floral aroma because of 2, 3-butanediol. Chili oils could be well divided into 3 groups by the partial least squares discriminant analysis (PLS-DA). According to the above results, the 10 kinds of chili oil had their own characteristics in color, capsaicinoids and flavor. Based on quantitative physicochemical indicators and flavor substances, the theoretical basis for the compounding of chili oil could be provided to meet the production demand more scientifically and accurately.
Biofilm formation in food industries: Challenges and control strategies for food safety
Elafify M, Liao X, Feng J, Ahn J and Ding T
Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.
Multi-layered structure and physicochemical properties of reconstituted meat-based products from minced fish by physical extrusion: Impact of extrusion strength
Fu Y and Xu Y
Multi-layered structure of reconstituted meat-based products from minced fish was formed by physical extrusion, followed by an investigation into the impact of extrusion strength on structural and physicochemical properties before and after frying. Under an appropriate pressure (3-9 kPa), the air within minced fish underwent enrichment and rearrangement to form a stratified phase, promoting the formation of multi-layered structure during frying. Conversely, the lower pressure (≤1.5 kPa) was insufficient for phase separation and directional rearrangement, while the higher pressure (≥15 kPa) would cause the stratified phase to flow out of food system. Moreover, by directly increasing water mobility and meat compactness, physical extrusion indirectly caused more water loss and stronger ionic bonds during frying, which was positively correlated with multi-layered structure. However, an excessive pressure caused an increase in random coil and hydrophobic interactions during frying, which was negatively correlated with multi-layered structure. In conclusion, appropriate physical extrusion strength promoted the formation of multi-layered structure.
Cerebral Aspects of Portal Hypertension: Hepatic Encephalopathy
Thomsen KL, Sørensen M, Kjærgaard K, Eriksen PL, Lauridsen MM and Vilstrup H
Portal hypertension has cerebral consequences via its causes and complications, namely hepatic encephalopathy (HE), a common and devastating brain disturbance caused by liver insufficiency and portosystemic shunting. The pathogenesis involves hyperammonemia and systemic inflammation. Symptoms are disturbed personality and reduced attention. HE is minimal or grades I to IV (coma). Bouts of HE are episodic and often recurrent. Initial treatment is of events that precipitated the episode and exclusion of nonhepatic causes. Specific anti-HE treatment is lactulose. By recurrence, rifaximin is add-on. Anti-HE treatment is efficacious also for prophylaxis, but emergence of HE marks advanced liver disease and a dismal prognosis.
Rehabilitation of Persistent Symptoms After Concussion
Lujan A and Lin K
Persistent symptoms following a mild traumatic brain injury are challenging to treat and pose a significant threat to community reintegration. Early recognition and intervention play a pivotal role in preventing the development of persistent symptoms by providing education that emphasizes clear recovery expectations and the high likelihood of full symptom resolution. We recommend early development of a personalized treatment plan, offering guidance on gradual return to activity and specific symptom-targeted treatments that may incorporate both pharmacologic and nonpharmacologic interventions.
Metabolomics comparison of four varieties apple with different browning characters in response to pretreatment during pulp processing
Wang WY, Bi JF, Hu JX and Li X
Browning commonly appeared in apple processing, which varied in different apple varieties. Present work investigated the metabolomics of four varieties apple of Yataka, Gala, Sansa, and Fuji, which possessed different browning characteristics and related enzymes. Sansa as browning insensitive apple variety, exhibited the least chroma change with the lowest PPO activity and the highest SOD activity among the four apple varieties. Browning inhibition pretreatment increased the activity of SOD and PAL and decreased PPO and POD activity. In addition, metabolomic variances among the four apple varieties (FC), their browning pulp (BR) and browning inhibition pulp (CM) were compared. And the key metabolites were in-depth analyzed to match the relevant KEGG pathways and speculated metabolic networks. There were 487, 644, and 494 significant differential metabolites detected in FC, BR and CM, which were consisted of lipids, benzenoids, phenylpropanoids, organheterocyclic compounds, organic acids, nucleosides, accounting for 23 %, 11 %, 15 %, 16 %, 11 % of the total metabolites. The differential metabolites were matched with 39, 49, and 36 KEGG pathways in FC, BR, and CM, respectively, in which other secondary metabolites biosynthesis metabolism was the most significant in FC, lipid metabolism was the most significant in BR and CM, and energy metabolism was markedly annotated in CM. Notably, Sansa displayed the highest number of differential metabolites in both its BR (484) and CM (342). The BR of Sansa was characterized by flavonoid biosynthesis, while the other three apple varieties were associated with α-linolenic acid metabolism. Furthermore, in browning sensitive apple varieties, the flavonoid and phenylpropanoid biosynthesis pathway was significantly activated by browning inhibition pretreatment. Phenolic compounds, lipids, sugars, organic acids, nucleotides, and adenosine were regulated differently in the four apple varieties, potentially serving as key regulatory sites. Overall, this work provides novel insight for browning prevention in different apple varieties.
Performance of Saccharomyces cerevisiae strains against the application of adaptive laboratory evolution strategies for butanol tolerance
Azambuja SPH, de Mélo AHF, Bertozzi BG, Inoue HP, Egawa VY, Rosa CA, Rocha LO, Teixeira GS and Goldbeck R
Although the industrial production of butanol has been carried out for decades by bacteria of the Clostridium species, recent studies have shown the use of the yeast Saccharomyces cerevisiae as a promising alternative. While the production of n-butanol by this yeast is still very far from its tolerability (up to 2% butanol), the improvement in the tolerance can lead to an increase in butanol production. The aim of the present work was to evaluate the adaptive capacity of the laboratory strain X2180-1B and the Brazilian ethanol-producing strain CAT-1 when submitted to two strategies of adaptive laboratory Evolution (ALE) in butanol. The strains were submitted, in parallel, to ALE with successive passages or with UV irradiation, using 1% butanol as selection pressure. Despite initially showing greater tolerance to butanol, the CAT-1 strain did not show great improvements after being submitted to ALE. Already the laboratory strain X2180-1B showed an incredible increase in butanol tolerance, starting from a condition of inability to grow in 1% butanol, to the capacity to grow in this same condition. With emphasis on the X2180_n100#28 isolated colony that presented the highest maximum specific growth rate among all isolated colonies, we believe that this colony has good potential to be used as a model yeast for understanding the mechanisms that involve tolerance to alcohols and other inhibitory compounds.
Is wine perception influenced by sustainability information? Insights from a consumer experiment with fungus resistant grape and organic wines
Borrello M, Vecchio R, Barisan L, Franceschi D, Pomarici E and Galletto L
Literature has highlighted that the organic attribute has heuristic value for many consumers, representing an overarching signifier of positive characteristics. Nowadays a plethora of alternative systemic approaches side organic production in the aim to improve the overall sustainability of the agrifood sector. Current study, based on blind and informed tasting, measured sustainability information influence on respondents' (n = 162) perceptions of organic and fungus-resistant grape (FRG) white wines. Findings of the within-subject non hypothetical experiment revealed that information has a stronger, positive impact on participants' perception of organic wine (increasing 13 % monetary preferences) compared to FRG wine (+9%). Additionally, attitudinal characteristics driving consumers' preferences towards FRG wine diverge from organic core motivations.
Effect of different inoculation strategies of mixed culture Saccharomyces cerevisiae/Oenococcus oeni on the aroma quality of Chardonnay wine
Yang L, Zhu X, Mao Y, Zhang X, Xu B and Yang X
There has been growing interest in the use of mixed cultures comprised of Oenococcus oeni and Saccharomyces cerevisiae to produce wine with local style and typicality. This study has investigated the influence of the inoculation protocol of O. oeni on the fermentation kinetics and aromatic profile of Chardonnay wine. The one selected autochthonous O. oeni strain (ZX-1) inoculated at different stages of the alcoholic fermentation process successfully completed malolactic fermentation (MLF). Co-inoculum of S. cerevisiae and O. oeni enabled simultaneous alcoholic fermentation and MLF, leading to at least a 30 % reduction in the total fermentation time when compared to the sequential inoculation process, which was attributed to the lower ethanol stress. Meanwhile, co-inoculum stimulated the accumulation of volatile aroma compounds in Chardonnay wine. In particular, the mixed modality where the O. oeni strain ZX-1 was inoculated 48 h after S. cerevisiae allowed higher levels of terpenes, acetates, short-chain, and medium-chain fatty acid ethyl esters to be produced, which may result in the enhanced floral and fruity attributes of wine. Aroma reconstitution and omission models analysis revealed that the accumulation of linalool, geraniol, isoamyl acetate, ethyl hexanoate, and ethyl caprylate during the mixed fermentation process enhanced the stone fruit, tropical fruit, and citrus aromas in Chardonnay wine. Therefore, the simultaneous fermentation of S. cerevisiae and autochthonous O. oeni ZX-1 has a positive effect on MLF and contributes to producing wines with distinctive style.
Assessment of water relaxometry of meat under different ageing processes using time domain nuclear magnetic resonance relaxometry
Cônsolo NRB, de Paula APM, Rezende-de-Souza JH, Herreira VLS, Laura S M Gôngora A, Colnago LA, Moraes TB, Santos PM, Nassu RT and Pflanzer SB
This study assessed water relaxometry of beef exposed to different ageing techniques by examining the inner and surface regions using time-domain nuclear magnetic resonance (TD-NMR) relaxometry. Beef strip loins were aged under vacuum (Wet), under vacuum using moisture absorbers (Abs), under vacuum using moisture absorbers and with mechanical tenderisation (AbsTend), or without any packaging (Dry). The ageing technique significantly influenced various meat parameters, including dehydration, total loss, and the moisture content of the meat surface. The transverse (T) relaxation times provided a more sensitive indicator of the changes in meat water relaxometry than the longitudinal (T) relaxation times. The Dry samples exhibited distinct differences in the T signals between the surface and inner regions of the meat. In particular, for the inner region, there were significant differences in signal areas between the Wet and Dry samples, and the Abs and AbsTend samples were positioned closely together between the Dry and Wet samples. The principal component analysis supported these findings: it indicated some differentiation among the ageing techniques in the score plot, but the differentiation was more pronounced when analysing the surface region. Additionally, there was a strong correlation between dehydration and the T values, leading to a clustering of the samples based on the ageing technique. The overlap between the Abs and AbsTend samples, situated between the Dry and Wet samples, suggests the potential of these treatments to produce meat with properties that are intermediate to Wet and Dry meat. Furthermore, tenderisation did not lead to greater dehydration.
Effect of fermentation on nutrient composition, antinutrients, and mineral bioaccessibility of finger millet based Injera: A traditional Ethiopian food
Endalew HW, Atlabachew M, Karavoltsos S, Sakellari A, Aslam MF, Allen L, Griffiths H, Zoumpoulakis P, Kanellou A, Yehuala TF, Abera MK, Tenagashaw MW and Cherie HA
Finger millet, like other cereals, contains high amounts of antinutrients that bind minerals, making them unavailable for absorption. This study explores the effect of traditional fermentation on nutritional, antinutritional, and subsequent mineral bioaccessibility (specifically iron, zinc, and calcium) of finger millet based Injera. Samples of fermented dough and Injera prepared from light brown and white finger millet varieties were analyzed for nutritional composition, antinutritional content, and mineral bioaccessibility following standard procedures. With some exceptions, the proximate composition of fermented dough was significantly affected by fermentation time. Compared to unfermented flour, the phytate and condensed tannin content significantly (p < 0.05) decreased for fermented dough and Injera samples. A strong decline in phytate and condensed tannin content was observed in white finger millet Injera as fermentation time increased, compared to light brown finger millet based Injera. The mineral bioaccessibility of Injera prepared from finger millet and maize composite flour increased with fermentation time, leading to a significant increase in bioaccessible iron, zinc, and calcium, ranging from 15.4-40.0 %, 26.8-50.8 %, and 60.9-88.5 %, respectively. The results suggest that traditional fermentation can be an effective method to reduce phytate and condensed tannin content, simultaneously increasing the bioaccessibility of minerals in the preparation of finger millet based Injera.
Unraveling chemical changes associated with the sensory quality of Chinese steamed bread as altered by wheat flour type
Song S, Jin D, Huang Y, Xie L, Muhoza B, Sun M, Feng T, Qiang W, Huang X and Liu Q
Chinese steamed bread (CSB) is an important staple of the Chinese people, and its flavor profile is mostly affected by wheat varieties among others. This study selected wheat flour made from three different wheat varieties and investigated their contribution to the CSB flavor profile in terms of metabolism. Thirteen aroma-active compounds identified by GC-O were determined as the main contributors to the different aroma profiles of three CSBs. 350 sensory trait-related metabolites were obtained from five key modules via weighted gene co-expression network analysis. It was found that the sensory characteristics of CSBs made of different wheat flour were significantly different. The higher abundance of lipids in Yongliang No.4 (YL04) wheat flour was converted to large number of fatty acids in fermented dough, which led to the bitterness of CSB. Besides, the abundance in organic acids and fatty acids contributed to the sour, milky, wetness and roughness attributes of YL04-CSB. More fatty amides and flavonoids in Jiangsu Red Durum wheat flour contributed to the fermented and winey attributes of CSB. Carbohydrates with higher abundance in Canadian wheat flour was involved in sugar-amine reaction and glucose conversion, which enhanced the sweetness of CSB. In addition, fatty acids, organic acids, amino acids, and glucose were crucial metabolites which can further formed into various characteristic compounds such as hexanal, hexanol, 2,3-butanediol, acetoin, and 2,3-butanedione and thus contributed to the winey, fresh sweet, and green aroma properties. This study is conductive to better understand the evolution of the compounds that affect the quality and aroma of CSBs.
The effect of different drying temperatures on flavonoid glycosides in white tea: A targeted metabolomics, molecular docking, and simulated reaction study
Wang Z, Liang Y, Wu W, Gao C, Xiao C, Zhou Z, Lin F and Sun W
Drying is an important stage used to improve the quality of white tea (WT). However, the effect of the drying temperature on the key taste compounds in WT remains unclear. In this study, targeted metabolomics, molecular docking, and a simulated reaction were used to investigate the transformation mechanism of flavonoid glycosides (FGs) in WT during drying at 60, 80, and 100 °C and its impact on taste. There were 45 differential FGs in WT at three drying temperatures. Compared with the withering samples for 48 h, the total FGs contents at three drying temperatures showed a decreasing trend, with quercetin-3-O-galactoside and kaempferol-3-O-glucoside showing the most degradation. These results were confirmed via a simulated drying reaction of FGs standards. Drying at 80 and 100 °C contributed to the formation of flavonoid-C-glycosides, but only trace amounts of these compounds were observed. In addition, nine key taste FGs were selected using dose-over-threshold values. These FGs regulated the taste of WT, mainly by binding to taste receptors via hydrogen bond, hydrophobic and electrostatic interactions. Finally, the taste acceptability of WT dried at 60 °C was found to be the highest, as this method could properly reduce the contents of FGs, weaken the bitterness and astringency, and retain the sweet and umami taste. This study revealed for the first time the transformation mechanism of sensory-active FGs affected by drying temperature, which provides a novel perspective for the analysis of the formation mechanism of the unique flavor of WT and the optimization of this process.
Whole genome sequencing of the poly-γ-glutamic acid-producing novel Bacillus subtilis Tamang strain, isolated from spontaneously fermented kinema
Prakash Tamang J, Kharnaior P and Pariyar P
Kinema, a traditional fermented soybean food from the Himalayas, is well-liked for its sticky texture and flavourful umami taste. Among 175 bacterial strains from spontaneously fermented kinema samples, Bacillus subtilis Tamang strain stood out for its high stickiness and viscosity. The strain's Poly-γ-glutamic acid (γ-PGA) contains various groups of glutamic acid and has a molecular weight of 660 kDa. It demonstrates the ability to solubilize iron, preserve ferritin in Caco-2 cells, and exhibit antibacterial properties. The genome of B. subtilis Tamang is devoid of plasmid elements but does feature nine insert elements. Noteworthy is the presence of unique secondary metabolites with potential antimicrobial effects, such as amyloliquecidin GF610, bogorol A, and thermoactinoamide A. A total of 132 carbohydrate-active enzymes (CAZy) were identified, hinting at possible prebiotic characteristics. The genome analysis revealed genes responsible for γ-PGA production via the capBCA complex. Furthermore, genes associated with fibrinolytic activity, taste enhancement, biopeptides, immunomodulators, and vitamins like B12 and K2 were found, along with probiotics and various health benefits. The genetic material for L-asparaginase production, known for its anti-cancer properties, was also detected, as well as CRISPR-Cas systems. The absence of virulence factors and antimicrobial resistance genes confirms the safety of consuming B. subtilis Tamang as a food-grade bacterium.
Intermolecular copigmentation of anthocyanins with phenolic compounds improves color stability in the model and real blueberry fermented beverage
Wang X, Cheng J, Zhu Y, Li T, Wang Y and Gao X
To improve the color stability of anthocyanins (ACNs) in blueberry fermented beverage, the intermolecular copigmentation between ACNs and 3 different phenolic compounds, including (-)-epigallocatechin gallate (EGCG), ferulic acid (FA), and gallic acid (GA) as copigments, was compared in the model and the real blueberry fermented beverage, respectively. The copigmented ACNs by EGCG presented a high absorbance (0.34 a.u.) and redness (27.09 ± 0.17) in the model blueberry fermented beverage. The copigmentation by the participation of the 3 different phenolic compounds showed all a spontaneous exothermic reaction, and the Gibbs free energy (ΔG°) of the system was lowest (-5.90 kJ/mol) using EGCG as copigment. Furthermore, the molecular docking model verified that binary complexes formed between ACNs and copigments by hydrogen bonds and π-π stacking. There was a high absorbance (1.02 a.u.), percentage polymeric color (PC%, 68.3 %), and good color saturation (C*ab, 43.28) in the real blueberry fermented beverage aged for 90 days, and more malvidin-3-O-glucoside had been preserved in the wine using EGCG as copigment. This finding may guide future industrial production of blueberry fermented beverage with improved color.
Effects of potential key substances in woodchips smoldering smoke on the formation of heterocyclic amines and polycyclic aromatic hydrocarbons in Frankfurter sausages
Cheng YQ, Leible M, Rigling M, Weiss J, Zhang YY and Gibis M
The Frankfurter sausages smoked with beech, oak, and alder, respectively, were used to clarify the underlying impact of the smoke chemical composition on the levels of heterocyclic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs). The result indicated that different wood types significantly affected the profiles of target substances in food matrices. The beech-smoked samples had lower contents of total free HAs (5.98-6.80 ng/g dry-weight-DW), PAH4 (3.31-3.83 ng/g DW), and PAH8 (10.0-10.8 ng/g DW), whereas the alder pyrolysis usually led to higher hazardous residues (8.26-9.19 ng/g DW of total free HAs, 4.24-6.60 ng/g DW of PAH4 and 14.1-23.3 ng/g DW of PAH8). In addition, the differences in smoke chemical composition were attributed to the different proportions of 15 key identified substances. Among them, two aldehydes (5-methyl-furfural & furfural) and two phenols (phenol & 5-hydroxymaltol) may have synergistic or competitive inhibitory effects on the formation of HAs and PAHs in smoked meat products.
Insights into digestibility, biological activity, and peptide profiling of flaxseed protein isolates treated by ultrasound coupled with alkali cycling
Yang J, Shao J, Duan Y, Geng F, Jin W, Zhang H, Peng D and Deng Q
This study aims to investigate the effects of ultrasound coupled with alkali cycling on the structural properties, digestion characteristics, biological activity, and peptide profiling of flaxseed protein isolates (FPI). The digestibility of FPI obtained by ultrasound coupled with pH 10/12 cycling (UFPI-10/12) (74.56 % and 79.12 %) was significantly higher than that of native FPI (64.40 %), and UFPI-10 showed higher hydrolysis degree (35.76 %) than FPI (30.65 %) after intestinal digestion. The combined treatment induced transition from α-helix to β-sheet with an orderly structure. Large FPI aggregates broke down into small-sized FPI particles, which induced the increase of specific surface area of particles. This might expose more cutting sites and contact area with enzymes. Furthermore, UFPI-10 showed high antioxidant activity (29.18 %) and lipid-lowering activity (70.52 %). Peptide profiling revealed that UFPI-10 exhibited a higher proportion of 300-600 Da peptides and significantly higher abundance of antioxidant peptides than native FPI, which might promote its antioxidant activity. Those results suggest that the combined treatment is a promising modification method to improve the digestion characteristics and biological activity of FPI. This work provides new ideas for widespread use of FPI as an active stabilizer in food systems.
Natural aromatic extract of black tea improved the water retention of pork meat batter
Xu WP, Dong RL, Lv AJ, Li YC, Zeng LT, Gao XL, Qi J, Lin Z, Yan HM, Zhang CH and Xiong GY
The effect of varying proportions (w/w) of natural aromatic extract of black tea (NAEBT) with pre-emulsification on the water-holding capacity (WHC) of pork meat batter was investigated. The addition of NAEBT significantly reduced the cooking loss (CL) of pork meat batter from 23.95 % to 18.30 % (P < 0.05). Furthermore, NAEBT with pre-emulsification significantly improved the color stability and increased the springiness (P < 0.05). The results of TBARS and carbonyls indicated that NAEBT with pre-emulsification significantly alleviated oxidative damage to proteins (P < 0.05), resulting in an increased level of β-sheet (P < 0.05), as confirmed by FT-IR analysis. As a result, the water mobility of pork meat batter was restricted (P < 0.05), resulting in an increase in the energy storage modulus (P < 0.05) and a decrease in the pore size. In summary, the WHC of pork meat batter was improved by the antioxidant effect of the NAEBT.
Digestion and absorption characteristics of iron-chelating silver carp scale collagen peptide and insights into their chelation mechanism
Zhao Q, Liang W, Xiong Z, Li C, Zhang L, Rong J, Xiong S, Liu R, You J, Yin T and Hu Y
Iron deficiency is widespread throughout the world, supplementing sufficient iron or improving the bioavailability of iron is the fundamental strategy to solve the problem of iron scarcity. Herein, we explored a new form of iron supplement, iron chelates of silver carp scales (SCSCP-Fe) were prepared from collagen peptide of silver carp scales (SCSCP) and FeCl·4HO, the effects of external environment and simulated gastrointestinal digestive environment on the stability of SCSCP-Fe and the structural changes of peptide iron chelates during digestion were investigated. The results of in vitro iron absorption promotion showed that the iron bioavailability of SCSCP-Fe was higher than that of FeSO. Two potential high iron chelating peptides DTSGGYDEY (DY) and LQGSNEIEIR (LR) were screened and synthesized from the SCSCP sequence by molecular dynamics and LC-MS/MS techniques. The FTIR results displayed that the binding sites of DY and LR for Fe were the carboxyl group, the amino group, and the nitrogen atom on the amide group on the peptide. ITC results indicated that the chelation reactions of DY and LR with Fe were mainly dominated by electrostatic interactions, forming chelates in stoichiometric ratios of 1:2 and 1:1, respectively. Both DY and LR had a certain ability to promote iron absorption. The transport of DY-Fe chelate may be a combination of the three pathways: PepT1 vector pathway, cell bypass, and endocytosis, while LR-Fe chelate was dominated by bivalent metal ion transporters. This study is expected to provide theoretical reference and technical support for the high-value utilization of silver carp scales and the development of novel iron supplements.
Impact of age on the digestion of cream cheese formulated with opposite caseins to whey proteins ratios: An in vitro study
Lavoisier A, Chevalier S, Henry G, Ossemond J, Harel-Oger M, Garric G, Dupont D and Morzel M
Ageing leads to changes in the functionality of the digestive tract but the effect of age on digestion and absorption of nutrients remains unclear. The objective of this study was to investigate in vitro the digestion of two high-protein dairy products similar to cream cheese (24 % w/w proteins, 20 % w/w lipids) with opposite casein to whey protein ratios, 80:20 (WP-20), and 20:80 (WP-80). The new static digestion model adapted to the general older adult population (≥65 y.) proposed by INFOGEST was used, as well as the standard version of the protocol. Kinetics of proteolysis and lipolysis were compared between both models for each product, in the gastric and intestinal phases of digestion. In both cream cheeses, the degree of protein hydrolysis (DH-P) was significantly lower for older adults than for young adults at the end of the gastric phase (-19 % for WP-20, and -44 % for WP-80), and at the end of the intestinal phase (-16 % for WP-20, and -20 % for WP-80). The degree of lipid hydrolysis (DH-L) was also significantly lower for older adults than for young adults at the end of the digestion for WP-20 (-30 %), but interestingly it was not the case for WP-80 (similar DH-L were measured). Free fatty acids were also released faster from WP-80 than from WP-20 in both digestion conditions: after 5 min of intestinal digestion DH-L was already ≈32 % for WP-80 against 14 % for WP-20. This was attributed to the opposite casein to whey protein ratios, leading to the formation of different gel structures resulting in different patterns of deconstruction in the gastrointestinal tract. This study highlights the fact that it is essential to carefully consider the composition, structure, and digestibility of foods to develop products adapted to the specific needs of the older adult population.
Chemosensory analysis of emotional wines: Merging of explicit and implicit methods to measure emotions aroused by red wines
Tonacci A, Scalzini G, Díaz-Guerrero P, Sanmartin C, Taglieri I, Ferroni G, Flamini G, Odello L, Billeci L and Venturi F
Wine is a cultural product capable of arousing emotions. Measuring emotions and figuring out how much they could influence preferences or purchase decisions of consumers is a new trend in sensory and consumer research. However, the complexity of feelings makes the measure of emotions extremely challenging. Thus, a comprehensive understanding of emotions related to sensory stimuli in wine tasting is still missing. The purpose of the study is to evaluate the emotional power of tasting red wines using a multidisciplinary approach, combining sensory analysis performed by trained panelists, implicit and explicit measurements of emotions and chemical analysis of the wines tasted. Various red wines, renowned for their high polyphenol content and expected to exhibit rich texture, mouthfeel, and aging potential, have been utilized to this extent. The results obtained showed that the emotions measured were well-correlated with quantitative and hedonic attributes obtained using classic sensory analysis. Some aromatic molecules can be identified as markers capable of eliciting positive and negative emotional reactions. While increasing literature in the topic is recently available, our study appears to be the first highlighting the presence of autonomic nervous system (ANS) differences verified by means of electrocardiogram (ECG) features, related to explicit and complete sensory patterns, in response to sensory stimuli related to emotional wine, with higher sympathetic values at extrema and vagal increase in the presence of neutral sensory compounds.
Determination of key volatile fishy substances of sea cucumber powder during the processing and their removal by supercritical fluid extraction
Wei S, Wu Q, Wang Z, Yu X, Jiao J and Dong X
More than 40 volatile compounds were detected in sea cucumber powder during the processing (through freeze-dried, desalination, supercritical fluid extraction and ultra-micro grinding) by multiple methods including e-nose, GC-IMS and GC-MS. It has been determined that aldehydes are the predominant volatile substances in the original freeze-dried sample, accounting for about 30 % of the total volatile substances. In addition, we established a supercritical fluid extraction strategy that could efficiently remove the aldehydes from the sea cucumber powder. GC-IMS and GC-MS showed that the relative content of aldehydes significantly decreased by 14 % and 28 %, respectively. Quantification of aldehydes using GC-MS showed a significant decrease in octanal from 927 µg/kg to 159 µg/kg. Further investigation combined with OAV analysis showed that 17 volatile substances in the freeze-dried sea cucumber powder were considered to be the predominant volatile compounds (OAV > 1).The primary fishy compounds found in sea cucumber powder were identified as hexanal, octanal, and an unidentified compound using GC-O, which can be effectively removed (OAV can't been estimated) by the supercritical fluid extraction strategy we established.
Effects of thermal treatment on the formation and properties of whey protein isolate/whey protein hydrolysate-sodium hyaluronate complexes
Wang D, Wang Y, Bao A, Xing M, Ji M, Li L, Song G, Yuan T and Gong J
In dairy products, the added sodium hyaluronate may form complexes with proteins, thereby affecting product properties. In the present study, the interaction between whey protein isolate (WPI)/ whey protein hydrolysate (WPH) and sodium hyaluronate (SH) was characterized under thermal treatment at different temperatures (25 ℃, 65 ℃, 90 ℃ and 121 ℃) after studying effects of protein/SH ratio and pH on complex formation. The addition of SH reduced the particle size of WPI/WPH and increased potential value in the system, with greater variation with increasing treatment temperature. The structural properties of complexes were studied. The binding with SH decreased the contents of free amino group and free thiol group, as well as the fluorescence intensity and surface hydrophobicity. FTIR results and browning intensity measurement demonstrated the formation of Maillard reaction products. Moreover, the attachment of SH improved the thermal stability of WPI/WPH and decreased their antigenicity.
Aloe vera and tea polyphenols composite coating delays passion fruit senescence by promoting phenolic and flavonoid accumulation
Wang Y, Muzammal Aslam M, Wang X, Gu H, Jia W, Li W and Shao Y
Passion fruits are highly perishable during postharvest storage and transportation, prompting the exploration of natural preservatives. This study investigates the synergistic effects of Aloe vera (ALV) and tea polyphenols (TP) coatings on quality retention, ripening modulation, and associated regulatory mechanisms in stored "golden" passion fruit (Passiflora spp.) at 10 °C. The application of a composite coating comprising 40 % ALV and 0.1 g/L TP led to notable improvements in fruit preservation over a 28-day storage period. At the day of 28, quantitatively, the ALV + TP treatment reduced weight loss by 41.60 %, shrinkage index by 28.13 %, and decay index by 50 %, significantly outperforming the control and individual treatments; the treated fruits exhibited enhanced firmness, reduced ethylene production, and the respiration peak was delayed about 6 days. Metabolomic analysis revealed pronounced alterations in key metabolic pathways, notably phenylpropanoid and flavonoid biosynthesis. Specifically, significant increases in metabolites such as phenolic acids (Feruloylmalic acid and Acropyrone) and flavonoids (Okanin-4'-O-glucoside, Apigenin-8-C-Arabinoside, Quercetin-3-O- (2'-O-galloyl) galactoside, and Catechin callate) were observed. Concurrently, transcript levels of key biosynthetic genes including cinnamate 4-hydroxylase (PeC4H), 4-coumarate-coenzyme a ligase (PeC4L), hydroxycinnamoyl transferase (PeHCT) and flavonol synthase (PeFLS) were significantly up-regulated by ALV + TP coating, indicating a robust activation of these pathways. The findings underscore the effectiveness of the ALV + TP composite coating as an environmentally friendly strategy for enhancing postharvest quality by promoting the accumulation of beneficial phenolic acids and flavonoids in passion fruits.
Characterization of two virulent Salmonella phages and transient application in egg, meat and lettuce safety
Sun X, Xue F, Cong C, Murtaza B, Wang L, Li X, Li S and Xu Y
Salmonella, a prominent foodborne pathogen, has posed enduring challenges to the advancement of food safety and global public health. The escalating concern over antibiotic misuse, resulting in the excessive presence of drug residues in animal-derived food products, necessitates urgent exploration of alternative strategies for Salmonella control. Bacteriophages emerge as promising green biocontrol agents against pathogenic bacteria. This study delineates the identification of two novel virulent Salmonella phages, namely phage vB_SalS_ABTNLsp11241 (referred to as sp11241) and phage 8-19 (referred to as 8-19). Both phages exhibited efficient infectivity against Salmonella enterica serotype Enteritidis (SE). Furthermore, this study evaluated the effectiveness of two phages to control SE in three different foods (whole chicken eggs, raw chicken meat, and lettuce) at different MOIs (1, 100, and 10000) at 4°C. It's worth noting that sp11241 and 8-19 achieved complete elimination of SE on eggs after 3 h and 6 h at MOI = 100, and after 2 h and 5 h at MOI = 10000, respectively. After 12 h of treatment with sp11241, a maximum reduction of 3.17 log CFU/mL in SE was achieved on raw chicken meat, and a maximum reduction of 3.00 log CFU/mL was achieved on lettuce. Phage 8-19 has the same effect on lettuce as sp11241, but is slightly less effective than sp11241 on chicken meat (a maximum 2.69 log CFU/mL reduction). In conclusion, sp11241 and 8-19 exhibit considerable potential for controlling Salmonella contamination in food at a low temperature and represent viable candidates as green antibacterial agents for food applications.
Role of particle size in modulating starch digestibility and textural properties in a rye bread model system
Tagliasco M, Font G, Renzetti S, Capuano E and Pellegrini N
In cereal products, the use of flour containing clusters of intact cells has been indicated as a potential strategy to decrease starch digestion. Rye possesses more uniform and thicker cell walls than wheat but its protective effect against starch digestion has not been elucidated. In this study, rye flours with three different particle sizes, large (LF) (∼1700 μm), medium (MF) (∼1200 μm), and small (SF) (∼350 μm), were used to produce model bread. The textural properties of these breads were analysed using Textural Profile Analysis (TPA). The starch digestibility of both the flour and the bread was measured using Englyst's method, while the presence of intact cell clusters was examined using Confocal Laser Scanning Microscopy (CLSM). Additionally, the disintegration of bread digesta during simulated digestion was assessed through image analysis. CLSM micrographs revealed that bread made with MF and LF retained clusters of intact cells after processing, whereas bread made with SF showed damaged cell walls. Starch digestibility in LF and MF was lower (p ≤ 0.05) than that in SF. Bread produced with MF and LF exhibited the least (p ≤ 0.05) cohesive and resilient texture, disintegrated more during digestion, and exhibited higher starch digestibility (p ≤ 0.05) than bread made with SF. These results highlight the central role of bread texture on in vitro starch digestibility.
In vitro gastrointestinal digestion of cow's and sheep's dairy products: Impact of species and structure
Saviard T, Menard O, Nebbia S, Ossemond J, Henry G, Chacon R, Le Feunteun S, Dupont D and Le Roux L
Sheep's milk (SM) is known to differ from cow's milk (CM) in nutritional composition and physicochemical properties, which may lead to different digestion behaviours. This work aimed to investigate the impact of the species (cow vs sheep) and the structure (milk vs yogurt) on the digestion of dairy products. Using an in vitro static gastrointestinal digestion model, CM, SM, cow's milk yogurt (CY) and sheep's milk yogurt (SY) were compared on particle size evolution, microscopic observations, degree of lipolysis, degree of proteolysis, specific protein degradation and calcium bioaccessibility. Species and structure affected particle size evolution during the gastric phase resulting in smaller particles for yogurts compared to milks as well as for CM products compared to SM products. Species impacted lipid composition and lipolysis, with SM products presenting higher short/medium-chain fatty acids content and higher intestinal degree of lipolysis. Proteolysis was influenced by structure, with milks showing higher intestinal degree of proteolysis compared to yogurts. Caseins were digested faster in CM, ⍺-lactalbumin was digested faster in SM despite its higher concentration, and during gastric digestion β-lactoglobulin was more degraded in CM products compared to SM products and more in yogurts compared to milks. Lastly, SM products released more bioaccessible calcium than CM products. In conclusion, species (cow vs sheep) impacted more the digestion compared to the structure (milk vs yogurt). In fact, SM was different from CM mainly due to a denser protein network that might slow down the accessibility of the enzyme to its substrate which induce a delay of gastric disaggregation and thus lead to slower the digestion of the nutrients.
Military Traumatic Brain Injury
Mortimer DS
Traumatic brain injury (TBI) in the military can involve distinct injury mechanisms, diagnostic challenges, treatments, and course of recovery. TBI has played a prominent role in recent conflicts, causing significant morbidity and mortality. Blast-related TBI in combat settings is often accompanied by other physical injuries. Military TBIs of all severities can lead to prolonged recoveries and persistent sequelae. The complex interplay between TBI, pain, and mental health conditions can significantly complicate diagnosis and recovery. Military and veteran health settings and programs provide comprehensive care along the continuum of TBI recovery rehabilitation with the goal of optimizing recovery and function.
Dietary intake of a MFGM/EV-rich concentrate promotes accretion of very long odd-chain sphingolipids and increases lipid metabolic turnover at the whole-body level
Sprenger RR, Bilgin M, Ostenfeld MS, Bjørnshave A, Rasmussen JT and Ejsing CS
Lipids from cow milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are considered beneficial for neurodevelopment, cognitive maintenance and human health in general. Nevertheless, it is largely unknown whether intake of infant formulas and medical nutrition products rich in these particles promote accretion of specific lipids and whether this affects metabolic homeostasis. To address this, we carried out a 16-week dietary intervention study where mice were supplemented with a MFGM/EV-rich concentrate, a control diet supplemented with a whey protein concentrate and devoid of milk lipids, or regular chow. Assessment of commonly used markers of metabolic health, including body weight, glucose intolerance and liver microanatomy, demonstrated no differences across the dietary regimes. In contrast, in-depth lipidomic analysis revealed accretion of milk-derived very long odd-chain sphingomyelins and ceramides in blood plasma and multiple tissues of mice fed the MFGM/EV diet. Furthermore, lipidomic flux analysis uncovered that mice fed the MFGM/EV diet have increased lipid metabolic turnover at the whole-body level. These findings help fill a long-lasting knowledge gap between the intake of MFGM/EV-containing foods and the health-promoting effects of their lipid constituents. In addition, the findings suggest that dietary sphingomyelins or ceramide-breakdown products with very long-chains can be used as structural components of cellular membranes, lipoprotein particles and signaling molecules that modulate metabolic homeostasis and health.
Edible hydrogel with dual network structure for weight management
Le Y, Li H, Liao X, Wu Y, Zhang M, Jiang Y, Li L and Zhao W
Obesity, a global health crisis, is fueled by shifts in behavior and environmental factors, notably increased consumption of energy-dense processed foods and inadequate dietary fiber. Traditional weight loss methods pose safety challenges. Sodium carboxymethylcellulose (CMC), a promising dietary fiber supplement, aids weight management. However, CMC-based hydrogels have mechanical weaknesses and poor gastrointestinal retention. A new dual-network structured hydrogel here was introduced to address these issues, maintaining volume and elasticity in the digestive system without adding calories, reducing caloric density, and enhancing food elasticity for prolonged satiety. The study assessed four distinct hydrogels, analyzing their mechanical characteristics under simulated gastrointestinal conditions and biomimetic digestion to identify promising options for clinical development. This dual-network hydrogel exhibits a mechanical strength up to 100 times that of the original gel, while its swelling rate throughout the digestion process is approximately twice that of the original gel. This offers a potential solution for obesity management, providing sustained satiety and addressing the mechanical deficiencies of current hydrogels within the digestive system.
Cold extraction process for producing a low-alcohol beer, International Pale Lager style: Evaluation and description of flavors using electronic tongue
Eduardo da Silva K, Marcel Borges E, Crestani I, Dognini J and César de Jesus P
Grains germinate, dry, and then undergo crushing before being combined with hot water to yield a sweet and viscous liquid known as wort. To enhance flavor and aroma compounds while maintaining a lower alcohol content, cold water is utilized during wort production without increasing its density. Recent years have witnessed a surge in demand for beverages with reduced alcohol content, reflecting shifting consumer preferences towards healthier lifestyles. Notably, consumers of low-alcohol beers seek products that closely mimic traditional beers. In response, batches of low-alcohol beer were meticulously crafted using a cold extraction method with room temperature water, resulting in a beer with 1.11% alcohol by volume (ABV). Sensory evaluations yielded a favorable score of 27 out of 50, indicating adherence to style standards and absence of major technical flaws. Furthermore, electronic taste profiling revealed a striking similarity between the low-alcohol beer and the benchmark International Pale Lager style, exemplified by commercial beers (5 and 0.03% ABV). Notably, the reduced-alcohol variant boasted lower caloric content compared to both standard and non-alcoholic counterparts. Consequently, the cold extraction approach emerges as a promising technique for producing low-alcohol beers within the International Pale Lager style, catering to evolving consumer preferences and health-conscious trends.
Activity and safety evaluation of natural preservatives
Dong H, Xu Y, Zhang Q, Li H and Chen L
Synthetic preservatives are widely used in the food industry to control spoilage and growth of pathogenic microorganisms, inhibit lipid oxidation processes and extend the shelf life of food. However, synthetic preservatives have some side effects that can lead to poisoning, cancer and other degenerative diseases. With the improvement of living standards, people are developing safer natural preservatives to replace synthetic preservatives, including plant derived preservatives (polyphenols, essential oils, flavonoids), animal derived preservatives (lysozyme, antimicrobial peptide, chitosan) and microorganism derived preservatives (nisin, natamycin, ε-polylysine, phage). These natural preservatives exert antibacterial effects by disrupting microbial cell wall/membrane structures, interfering with DNA/RNA replication and transcription, and affecting protein synthesis and metabolism. This review summarizes the natural bioactive compounds (polyphenols, flavonoids and terpenoids, etc.) in these preservatives, their antioxidant and antibacterial activities, and safety evaluation in various products.
Microbial trace based on PCR-DGGE to evaluate the ripening stage of minas artisanal cheeses from the Canastra microregion produced by different dairies
José Machado de Abreu D, Pereira F, Sérgio Lorenço M, Juliana Martinez S, Nara Batista N, Elena Nunes Carvalho E, Freitas Schwan R and Hilsdorf Piccoli R
The Minas artisanal cheese from the Serra da Canastra (MAC-CM) microregion is a traditional product due to its production and ripening process. Artisanal chesses manufactured with raw cow's milk and endogenous dairy starters ("also known as pingo") have distinctive flavors and other sensory characteristics because of the unknown microbiota. The aim of this study was to evaluate the microbiota during 30 days of ripening, the physicochemical changes, and their relation in MACs produced in two different microregions located in the Serra da Canastra microregion through culture-dependent and culture-independent methods. The MACs were collected in the cities of Bambuí (MAC-CMB) and Tapiraí (MAC-CMT) in the Canastra microregion (n = 21). Cheeses uniqueness was demonstrated with the multivariate analysis that joined the microbiota and physicochemical characteristics, mainly to the proteolysis process, in which the MAC-CMT showed deeper proteolysis (DI -T0:14.18; T30: 13.95), while the MAC-CMB reached only a primary level (EI -T0:24.23; T30: 31.10). Abiotic factors were responsible for the differences in microbial diversity between the cheese farms. Different microbial groups: the prokaryotes, like Corynebacterium variabile, Lactococcus lactis, and Staphylococcus saprophyticus; and the eukaryotes, like Kluyveromyces lactis and Diutina catenulata dominated ripening over time. The microbial community and proteolysis were responsible for the predominance of volatile groups, with alcohols predominating in MAC-CMB and free fatty acids/acids and esters in MAC-CMT.
Mechanistic understanding of the improved drying characteristics and quality attributes of lily (Lilium lancifolium Thunb.) by modified microstructure after pulsed electric field (PEF) pretreatment
Bao G, Tian Y, Wang K, Chang Z, Jiang Y and Wang J
The effects of the non-thermal (pulsed electric field, PEF) and thermal pretreatment (vacuum steam pulsed blanching, VSPB) on the drying kinetics, quality attributes, and multi-dimensional microstructure of lily scales were investigated. The results indicate that both PEF and VSPB pretreatments improved the drying rate compared to untreated lily scales. Specifically, PEF pretreatment reduced the drying time by 29.58 % - 43.60 %, while VSPB achieved a 46.91 % reduction in drying time. PEF treatment facilitated the enhanced leaching of phenols and flavonoids compared to VSPB treated samples, thereby increasing antioxidant activity. The rehydration ratio of the dried lilies was improved with PEF and VSPB treatment, which closely related to the microstructure. Weibull distribution and Page model demonstrated excellent fit for the drying and rehydration kinetics of lily scales, respectively (R > 0.993). The analysis of multi-dimensional microstructure and ultrastructure confirmed the variations in moisture migration and phytochemical contents among different treatments. Consequently, this study offers insights into the technological support for the potential of non-thermal pretreatment in fruits and vegetables.
Modulation of bitter taste receptors by yeast extracts
Belloir C, Karolkowski A, Thomas A, Menin R and Briand L
Yeast extracts (YEs) are used in foods because of their flavour properties and ability to reduce bitterness. The adenosine 5'-monophosphate (AMP) found in YEs is known to decrease the bitterness of some compounds. This study aimed to investigate the ability of YEs to inhibit bitter taste receptors (TAS2Rs) using in vitro cell-based assays. A screen of TAS2Rs activated by AMP and YEs revealed that AMP and the AMP-rich YE activated more TAS2Rs. The inhibitory effect of the AMP-rich YE on seven TAS2Rs activated by bitter agonists was studied. YE reduced TAS2R activation, increased the EC value and decreased the maximum amplitude, demonstrating competitive and non-competitive inhibitions. Amongst the nineteen TAS2Rs tested, seven showed 40 % or greater inhibition after treatment of AMP-rich YE. Our data provide a better understanding of the TAS2R inhibition mechanism of AMP-rich YEs and promote their use as a strategy to reduce bitterness in foods and medicines.
Thermal resistance of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella in animal fat - Kinetic analysis and mathematical modeling
Ozturk S, Huang L, Hwang CA and Sheen S
The objective of this study was to evaluate the effect of fat on thermal resistance of L. monocytogenes, E. coli O157:H7, and Salmonella spp. A 4-strain cocktail of each microorganism was inoculated to beef tallow and heated isothermally at temperatures between 55 and 80℃. All survival curves did not follow the 1-order inactivation kinetics but conformed to a two-stage linear pattern. The first stage was markedly less heat-resistant than the second, as manifested by significantly lower D values. The z values of E. coli O157 H7 and Salmonella spp. were 11.8 °C and 12.3 °C in the first stage (z) but increased to 23.7 °C and 20.8 °C in the second stage (z), respectively. For L. monocytogenes, while the z values were similar for both stages (z = 19.6 °C and z = 18.5 °C), the second stage D values are 3.6-5.9 times of those in the first stage. One-step analysis was used to fit the nonlinear curves to the Weibull model, yielding < 1 exponents for the model (0.495, 0.362, and 0.282, respectively, for L. monocytogenes, E. coli O157:H7, and Salmonella spp.), suggesting gradually increased thermal resistance during heating. The experimental results showed that these microorganisms could resist heating for longer time and at higher temperatures in tallow than they do in regular meats containing lower levels of fat. The kinetic models can be used to develop thermal processes to properly inactivate pathogens contaminated in the fat portions of meat products or other high fat products.
Effect of radio frequency roasting on the lipid profile of peanut oil and the mechanism of lipids transformation: Revealed by untargeted lipidomics approach
Peng Z, Zhang Y, Ai Z, Wei L and Liu Y
Radio frequency (RF) heating has been proved an alternative roasting method for peanuts, which could effectively degrade aflatoxins and possesses the advantages of greater heating efficiency and penetration depth. This study aimed to investigate the influences of RF roasting on the lipid profile of peanut oil under 150 °C target temperature with varied peanut moisture contents (8.29 % and 20 %) and holding times (0, 7.5, and 15 min), using ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS)-based lipidomics. In total, 2587 lipid species from 35 subclasses were identified. After roasting, the contents of sterol lipid (ST) and subclasses of glycerophospholipids (GPs) and glycoglycerolipids increased significantly, while fatty acid (FA), Oxidized (Ox-) FA, cholesterol (CE), and all subclasses of glycerolipids (GLs) decreased, and 1084 differential lipids were screened. The highest ST and lowest CE contents in peanut oil were achieved by medium roasting (7.5 min). The raise in moisture content of peanut simply affected a few GPs subclasses adversely. Compared with hot air (HA) roasting, RF decelerated lipid oxidation, showing higher levels of diacylglycerol, triacylglycerol and FA, with no additional negative impact and only 69 exclusive differential lipids. During RF roasting, hydrolysis and oxidation of fatty acyl chains into secondary oxides were the central behaviors of lipids transformation. This study could provide insights into the lipid changes and transformation mechanism of peanut oil by RF roasting processing.
Application of the molecular dynamics simulation GROMACS in food science
Yu D, Li H, Liu Y, Yang X, Yang W, Fu Y, Zuo YA and Huang X
Food comprises proteins, lipids, sugars and various other molecules that constitute a multicomponent biological system. It is challenging to investigate microscopic changes in food systems solely by performing conventional experiments. Molecular dynamics (MD) simulation serves as a crucial bridge in addressing this research gap. The Groningen Machine for Chemical Simulations (GROMACS) is an open-source, high-performing molecular dynamics simulation software that plays a significant role in food science research owing to its high flexibility and powerful functionality; it has been used to explore the molecular conformations and the mechanisms of interaction between food molecules at the microcosmic level and to analyze their properties and functions. This review presents the workflow of the GROMACS software and emphasizes the recent developments and achievements in its applications in food science research, thus providing important theoretical guidance and technical support for obtaining an in-depth understanding of the properties and functions of food.
Stability of R-phycoerythrin from Furcellaria lumbricalis - Dependence on purification strategies and purity
Kumar S, Møller AH, Ilmjärv T and Dalsgaard TK
R-phycoerythrin (R-PE) is the most abundant, naturally occurring phycobiliproteins found in red algae. The spectroscopic and structural properties of phycobiliproteins exhibit unique absorption characteristics with two significant absorption maxima at 498 and 565 nm, indicating two different chromophores of R-PE, phycourobilin and phycoerythrobilin respectively. This study aimed to clarify how the stability of R-PE purified from F. lumbricalis was affected by different purification strategies. Crude extracts were compared to R-PE purified by i) microfiltration, ii) ultrafiltration, and iii) multi-step ammonium sulphate precipitation followed by dialysis. The stability of the different R-PE preparations was evaluated with respect to pH (2, 4, 6, 7, 8, 10 and 12) and temperature (20, 40, 60, 80 and 100 °C). The absorbance spectra indicated higher stability of phycourobilin as compared to phycoerythrobilin for heat and pH stability in the samples. All preparations of R-PE showed heat stability till 40 °C from the findings of color, concentration of R-PE and fluorescence emission. The crude extract showed stability from pH 6 to 8, whereas R-PE purified by ultrafiltration and multi-step ammonium sulphate precipitation were both stable from pH 4 to 8 and R-PE purified by microfiltration exhibited stability from pH 4 to 10 from the results of color, SDS-PAGE, and concentration of R-PE. At pH 2, the color changed to violet whereas a yellow color was observed at pH 12 in the samples along with the precipitation of the protein.
Structural changes and degradation mechanism of type 3 resistant starch during in vitro fecal fermentation
Liu J, Dhital S, Ahmed Junejo S, Fu X, Huang Q and Zhang B
The colonic fermentation metabolites of resistant starch (RS) are recognized to have various health benefits. However, the relationship between the structural variation of RS and the colonic fermentation properties, remains inadequately studied, especially for type 3 resistant starch. The in vitro fecal fermentation properties with multi-structure evolution of A- and B-type polymorphic resistant starch spherulites (RSS) were investigated. Both polymorphic types of RSS showed similar fermentation rate and total short-chain fatty acid profiles, while the butyrate concentration of the A-type RSS subjected to 24 h of fermentation was significantly higher compared to B-type RSS. In the case of recrystallized starch spherulites, irrespective of the polymorphic type, gut bacteria preferentially degraded the intermediate chains and crystalline regions, as the local molecule-ordered area potentially serves as suitable attachment sites or surfaces for microbial enzymes.
Current trends and perspectives on salty and salt taste-enhancing peptides: A focus on preparation, evaluation and perception mechanisms of salt taste
Chen X, Luo N, Guo C, Luo J, Wei J, Zhang N, Yin X, Feng X, Wang X and Cao J
Long-term excessive intake of sodium negatively impacts human health. Effective strategies to reduce sodium content in foods include the use of salty and salt taste-enhancing peptides, which can reduce sodium intake without compromising the flavor or salt taste. Salty and salt taste-enhancing peptides naturally exist in various foods and predominantly manifest as short-chain peptides consisting of < 10 amino acids. These peptides are primarily produced through chemical or enzymatic hydrolysis methods, purified, and identified using ultrafiltration + gel filtration chromatography + liquid chromatography-tandem mass spectrometry. This study reviews the latest developments in these purification and identification technologies, and discusses methods to evaluate their effectiveness in saltiness perception. Additionally, the study explores four biological channels potentially involved in saltiness perception (epithelial sodium channel, transient receptor potential vanilloid 1, calcium-sensing receptor (CaSR), and transmembrane channel-like 4 (TMC4)), with the latter three primarily functioning under high sodium levels. Among the channels, salty taste-enhancing peptides, such as γ-glutamyl peptides, may co-activate the CaSR channel with calcium ions to participate in saltiness perception. Salty taste-enhancing peptides with negatively charged amino acid side chains or terminal groups may replace chloride ions and activate the TMC4 channel, contributing to saltiness perception. Finally, the study discusses the feasibility of using these peptides from the perspectives of food material constraints, processing adaptability, multifunctional application, and cross-modal interaction while emphasizing the importance of utilizing computational technology. This review provides a reference for advancing the development and application of salty and salt-enhancing peptides as sodium substitutes in low-sodium food formulations.
Creating similar food boluses as that in vivo using a novel in vitro bio-inspired oral mastication simulator (iBOMS-Ⅲ): The cases with cooked rice and roasted peanuts
Xu Y, Lv B, Wu P and Chen XD
Food bolus is the major outcome of oral processing of foods. Its structure and properties are crucial for safe swallowing and subsequent gastric digestion. However, collecting the ready-to-swallow bolus for further analysis in either normal or deficient human subjects is difficult, regulatorily or practically. Here, a novel in vitro bio-inspired oral mastication simulator (iBOMS-Ⅲ) was developed to be capable of replicating food boluses comparable to those in vivo. Cooked rice and roasted peanuts were used as the model foods (soft and hard) respectively. Particle size distribution, moisture content and rheology of the food boluses produced in the iBOMS-Ⅲ were assessed. A conventional food blender was also employed as a non-consequential comparation. Eighteen healthy young volunteers of the ages from 20-30 years (10 male and 8 female) were invited to provide the in vivo data. For cooked rice boluses produced by the iBOMS-Ⅲ with 10, 12, 14, and 20 chewing number of cycles, the moisture content exhibited minimal variation (68.3-68.8 wt%), aligning closely with values obtained from the average value of the human subjects (67.5 wt%). Similarly, the boluses from roasted peanut displayed similar moisture contents across masticatory number of cycles (36, 40, and 44 number of cycles), averaging at 35.3 %, mirroring the average in vivo results (33.8 wt%). Furthermore, the shear viscosity of both cooked rice and roasted peanut boluses exhibited minimal variations with iBOMS-Ⅲ chewing number of cycles. The particle size distributions of the boluses produced with 14 and 44 chewing number of cycles matched well with the in vivo data for cooked rice and roasted peanuts, with median particle size (d) being 1.07 and 0.78 mm, respectively. The physical properties of the food boluses collected from the food blender, with varying grinding times, differed significantly. This study demonstrates the value of the iBOMS-Ⅲ in achieving realistic boluses with two very different food textures.
Characterization and in vitro calcium release of the novel calcium-loaded complexes using Antarctic krill protein and pectin: Effect of different blending sequences
Chen L, Lin S, He X, Ye J, Huang Y and Sun N
Food-grade biopolymer-based complexes are of particular interest in the field of biologic ingredient delivery owing to unique controlled-release properties. Herein, three calcium-loaded complexes using Antarctic krill protein (P) and pectin (HMP) with different blending sequences were designed, named P + Ca + HMP, P + HMP + Ca and HMP + Ca + P, respectively. The calcium-loaded capacity, structural properties, and in vitro gastrointestinal calcium release of the complexes were investigated. The results demonstrated that the calcium binding rate and content of the P + Ca + HMP complex were the highest, reaching to 90.3 % and 39.0 mg/g, respectively. Particularly, the P + Ca + HMP complex exhibited a more stable fruit tree-like structure. Furthermore, the structural analysis confirmed that the primary interaction forces involved hydrogen bond, electrostatic, hydrophobic and ionic bond interaction. Ultimately, the P + Ca + HMP complex demonstrated superior calcium delivery. In conclusion, a novel calcium delivery system was successfully developed based on optimized the self-assembly sequence, which held significant importance in promoting the high-value utilization of Antarctic krill protein and enhancing the in vitro bioaccessibility of calcium.
Unveiling the synthesis of aromatic compounds in sauce-flavor Daqu from the functional microorganisms to enzymes
Zhu M, Deng Z, Tie Y, Quan S, Zhang W, Wu Z, Pan Z, Qin J, Wu R, Luo G and Gomi K
Aromatic compounds serve as the primary source of floral and fruity aromas in sauce-flavor (Maotai flavor) baijiu, constituting the skeleton components of its flavor profile. Nevertheless, the formation mechanism of these compounds and key aroma-producing enzymes in sauce-flavor Daqu (fermentation agent, SFD) remain elusive. Here, we combined metagenomics, metaproteomics, metabolomics, and key enzyme activity to verify the biosynthesis pathway of aromatic compounds and to identify key enzymes, genes, and characteristic microorganisms in SFD. The results showed that the later period of fermentation was critical for the generation of aromatic compounds in SFD. In-situ verification was conducted on the potential key enzymes and profiles in various metabolites, providing comprehensive evidence for the main synthetic pathways of aromatic compounds in SFD. Notably, our results showed that primary amine oxidase (PrAO) and aldehyde dehydrogenase (ALDH) emerged as two key enzymes promoting aromatic compound synthesis. Additionally, two potential key functional genes regulating aromatics generation were identified during SFD fermentation through correlation analysis between proteins and relevant metabolites, coupled with in vitro amplification test. Furthermore, original functional strains (Aspergillus flavus-C10 and Aspergillus niger-IN2) exhibiting high PrAO and ALDH production were successfully isolated from SFD, thus validating the results of metagenomics and metaproteomics analyses. This study comprehensively elucidates the pathway of aromatic compound formation in SFD at the genetic, proteomic, enzymatic, and metabolomic levels, providing new ideas for the investigation of key flavor substances in baijiu. Additionally, these findings offer valuable insights into the regulatory mechanisms of aromatic compounds generation.
Application of supercritical carbon dioxide to enhance the aroma of whole sorghum flour for use in 3D printing of sorghum cookies
Tuhanioglu A and Ubeyitogullari A
Sorghum is a promising ingredient for new food products due to its high fiber content, slow digestibility, drought resistance, and gluten-free nature. One of the main challenges in sorghum-based products is the unpleasant aroma compounds found in grain sorghum. Therefore, in this study, sorghum flour was treated via supercritical carbon dioxide (SC-CO) to remove undesired aroma compounds. The resulting SC-CO-treated flours were used to generate dough for 3D food printing. At the optimized conditions, sorghum cookies were 3D-printed using 60 % water and a nozzle diameter of 1.5 mm. All dough samples produced with untreated and SC-CO-treated sorghum flours exhibited shear-thinning behavior. Changing the treatment pressure (8-15 MPa) or temperature (40-60 °C) did not significantly affect the viscosity of the dough samples. Moreover, the sorghum cookie doughs had higher G' and G″ values after the SC-CO treatments (G' > G″). Doughs generated from flours treated at 15 MPa - 40 °C and 8 MPa - 60 °C showed lower adhesiveness compared to the ones produced from untreated flour, whereas 15 MPa - 60 °C treatment did not affect the adhesiveness. After baking, the 3D-printed cookies from SC-CO-treated flour exhibited significantly lower redness (a*), but the hardness of the cookies was not affected by SC-CO treatment. Overall, the SC-CO treatment of sorghum flour did not negatively affect the quality parameters of the 3D-printed cookies while enhancing the aroma of the flour.
Sensory characterisation of meatless and nitrite-free cooked ham alternatives in comparison to conventional counterparts: Temporal dominance of sensations and partial napping with ultra-flash profiling
Melios S, Grasso S, Bolton D and Crofton E
The cooked ham market is expanding with nitrite-free and meatless alternatives gaining traction as leading trends. An understanding of the attributes that influence the sensory quality of cooked ham is crucial for developing healthier and environmentally sustainable products. The primary aim of this study was to investigate how the removal of nitrites and the use of meatless ingredients affect the sensory characteristics of cooked ham currently available in the Irish market. Sensory evaluation of selected cooked hams (n = 8), including alternatives without nitrites or based on mycoprotein (meatless), was conducted using Temporal Dominance of Sensations (TDS) for in mouth processing and Partial Napping (PN) with Ultra-Flash Profiling (UFP) for the appearance, by a trained sensory panel (n = 9). The nitrite-free cooked ham displayed a similar temporal sensory profile and appearance to the products of the same category, highlighting the opportunity for more nitrite-free products to enter the market. The meatless product was dominated by a "smoky" flavour, which was perceived as "artificial". Meatless ham had a more distinct appearance than the meat-based products and was associated with attributes such as "fake", "artificial colour" and "unappealing". In general, results revealed distinct differences between whole-muscle and sectioned and formed cooked ham products in terms of texture, flavour, and appearance. PN and UFP grouped whole-muscle cooked hams together, which were associated with terms "natural-looking", "better quality" and "healthier", while sectioned and formed cooked hams were perceived as "cheap" and "artificial". The results of this study contribute to a better understanding of the sensory attributes of cooked ham products emphasising the challenges related to novel formulations, and offers valuable insights for the development of healthier and more sustainable meat products within the food industry.
Acerola processing waste: Convective drying with ethanol as pretreatment
Santos AAL, Corrêa JLG, Machado GGL, Silveira PG, Cruz MS and Nascimento BS
The acerola seed is an agro-industrial waste. It is a high moisture content product, rich in bioactive compounds. Drying is an alternative to make this waste available in a safe condition. The use of ethanol as a pretreatment could improve the drying process besides reducing the operation time. This study aimed to investigate the influence of ethanol pretreatment (ET) on the content of bioactive compounds, cell wall thickness, and color. The drying kinetics was studied, and the influence of external and internal resistance was discussed. The samples were immersed in ethanol for 2 min with subsequent convective drying (40 °C and 60 °C; 1 m s) until they reached the equilibrium condition. The ET reduced the drying time up to 36.36 %. The external and mixed control of mass transfer were identified as the governing regimes for drying this material, depending on the use of ethanol. ET led to an increase in effective diffusivity, a reduction in cell wall thickness, and preservation of the color of the dried waste. The ET positively impacted the conservation of ascorbic acid compared to untreated dried samples but was not relevant to phenolic compounds, carotenoids, and antioxidant activity. The drying process increased the bioactivity of the anthocyanins. The best condition was drying at 60 °C, pretreated with ethanol.
Comparative evaluation of the antihyperglycemic effects of three extracts of sea mustard (Undaria pinnatifida): In vitro and in vivo studies
Lee SM, Park SY and Kim JY
Undaria pinnatifida (UP) contains multiple bioactive substances, such as polyphenols, polysaccharides, and amino acids, which are associated with various biological properties. This study aimed to evaluate the antihyperglycemic effects of three extracts obtained from UP. UP was extracted under three different conditions: a low-temperature water extract at 50 °C (UPLW), a high-temperature water extract at 90 °C (UPHW), and a 70 % ethanol extract (UPE). Nontargeted chemical profiling using high-performance liquid chromatography-triple/time-of-flight mass spectrometry (HPLC-Triple TOF-MS/MS) was conducted on the three UP extracts. Subsequently, α-glucosidase inhibitory (AGI) activity, glucose uptake, and the mRNA expression of sodium/glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) were evaluated in Caco-2 cell monolayers. Furthermore, an oral carbohydrate tolerance test was performed on C57BL/6 mice. The mice were orally administered UP at 300 mg/kg body weight (B.W.), and the blood glucose level and area under the curve (AUC) were measured. Compared with glucose, UPLW, UPHW and UPE significantly inhibited both glucose uptake and the mRNA expression of SGLT1 and GLUT2 in Caco-2 cell monolayers. After glucose, maltose, and sucrose loading, the blood glucose levels and AUC of the UPLW group were significantly lower than those of the control group. These findings suggest that UPLW has antihyperglycemic effects by regulating glucose uptake through glucose transporters and can be expected to alleviate postprandial hyperglycemia. Therefore, UPLW may have potential as a functional food ingredient for alleviating postprandial hyperglycemia.
Investigating the etiology of Haff disease: Optimization and validation of a sensitive LC-MS/MS method for palytoxins analysis in directly associated freshwater and marine food samples from Brazil
Dutra Pierezan M, Rafael Kleeman C, Luiz Manique Barreto P, Barcellos Hoff R and Verruck S
Haff disease typically develops after eating contaminated marine or freshwater species, especially fish. Despite still having an unknown etiology, recent reports have suggested its possible correlation with palytoxins. Therefore, the present work aimed to optimize and perform a validation of a sensitive method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for the analysis of palytoxin and some of its analogs, with the main purpose of investigating their presence in marine and freshwater food samples associated with Haff disease in Brazil. The method optimization was performed using a central composite rotatable design and fish samples fortified with the palytoxin standard. Then, the optimized method was validated for different food matrices, including freshwater and marine fish, mollusks, and crustaceans. The sample preparation involved a solid-liquid extraction using methanol and water, solid-phase extraction using Strata-X cartridges, and on-column palytoxin oxidation. The detection of the main oxidized fragments (amino and amide aldehydes) was achieved by LC-MS/MS with electrospray ionization in positive mode, using a C18 column, as well as acetonitrile and water as mobile phases, both acidified with 0.1 % of formic acid. After optimization and validation, the etiological investigation involved the analysis of 16 Brazilian Haff disease-related food samples (in natura and leftover meals) from 2022. The method was demonstrated to be appropriate for quantitative analysis of freshwater and marine species. So far, it has proven to be one of the most sensitive methods related to palytoxin detection (LOD 10 μg/kg), being able to work in a range that includes the provisional ingestion limit (30 μg/kg). Regarding the Haff disease-related samples analysis, there is a strong indication of palytoxin contamination since the amino aldehyde (common fragment for all palytoxins) was detected in 15 of the 16 samples. Selected results were confirmed using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS).
Two-year investigation of spore-formers through the production chain at two cheese plants in Norway
Finton M, Skeie SB, Aspholm ME, Franklin-Alming FV, Mekonnen YB, Kristiansen H and Porcellato D
Spore-forming bacteria are the most complex group of microbes to eliminate from the dairy production line due to their ability to withstand heat treatment usually used in dairy processing. These ubiquitous microorganisms have ample opportunity for multiple points of entry into the milk chain, creating issues for food quality and safety. Certain spore-formers, namely bacilli and clostridia, are more problematic to the dairy industry due to their possible pathogenicity, growth, and production of metabolites and spoilage enzymes. This research investigated the spore-forming population from raw milk reception at two Norwegian dairy plants through the cheesemaking stages until ripening. Samples were collected over two years and examined by amplicon sequencing in a culture independent manner and after an anaerobic spore-former enrichment step. In addition, a total of 608 isolates from the enriched samples were identified at the genus or species level using MALDI-TOF analysis. Most spore-forming isolates belong to the genera Bacillus or Clostridium, with the latter dominating the enriched MPN tubes of raw milk and bactofugate. Results showed a great variation among the clostridia and bacilli detected in the enriched MPN tubes. However, B. licheniformis and C. tyrobutyricum were identified in all sample types from both plants throughout the 2-year study. In conclusion, our results shed light on the fate of different spore-formers at different processing stages in the cheese production chain, which could facilitate targeted actions to reduce quality problems.
Evolution-aided improvement of the acid tolerance of Levilactobacillus brevis and its application in sourdough fermentation
Han NR, Yu S, Byun JA, Yun EJ, Cheon S, Song S, Shim S, Choi IG, Lee SH and Kim KH
Levilactobacillus brevis is crucial in food fermentation, particularly in sourdough production. However, the cultivation of L. brevis faces a challenge with accumulation of lactic acid, a major inhibitor. We aimed to increase the acid tolerance of L. brevis, an industrial strain for sourdough fermentation. We used the adaptive laboratory evolution (ALE) to obtain lactic acid tolerant strains. The evolved strain's fermentation and metabolite profiles, alongside sensory evaluation, were compared with the parental strain by using various analytical techniques. The ALE approach increased lactic acid tolerance in the evolved strain showing an increased growth rate by 1.1 and 1.9 times higher than the parental strain at pH 4.1 and 6.5, respectively. Comprehensive analyses demonstrated its potential application in sourdough fermentation, promising reduced downstream costs. The evolved strain, free from genetically modified organisms concerns, has great potential for industrial use by exhibiting enhanced growth in acidic conditions without affecting consumers' bread preferences.
Release profile of amino acids encapsulated in solid lipid particles during in vitro oro-gastrointestinal digestion
Rajendrakumar S, Beaumal V, Kermarrec A, Lopez C, Novales B, Rabesona H, Simongiovanni A, Demersay TC and Marze S
Some amino acids are known to mediate immune responses through gut microbiota metabolism in both humans and monogastric animals. However, through the diet, most free amino acids are absorbed in the small intestine and only a small quantity reaches the microbiota-rich colon. To enhance microbial metabolism of amino acids and their potential health benefits, encapsulation strategies are developed for their protection and delivery to the colon. So far, the main encapsulation systems for amino acids are based on solid lipid particles, but their fate within the digestive tract has never been fully clarified. In this study, we investigated the release of various amino acids (branched-chain amino acid mixture, or lysine, or tryptophan) loaded in solid lipid particles during in vitro oro-gastrointestinal digestion mimicking the piglet. The loaded solid lipid particles were fully characterized for their composition, thermal behavior, molecular structure, crystalline state, surface morphology, and particle size distribution. Moreover, we investigated the effect of particle size by sieving solid lipid particles into two non-overlapping size fractions. We found that amino acid release was high during the gastric phase of digestion, mainly controlled by physical parameters, namely particle size and crystalline state including surface morphology. Large particle size and/or smooth ordered particle indeed led to slower and lower release. Although lipid hydrolysis was significant during the intestinal phase of digestion, the impact of the crystalline state and surface morphology was also observed in the absence of enzymes, pointing to a dominant water/solute diffusion mechanism through these porous solid lipid particles.
The role of DsbA and PepP genes in the environmental tolerance and virulence factors of Cronobacter sakazakii
Jin T, Pang L, Yue T, Niu L, Li T, Liang Y, Zhang Y, Yan C, Yang B, Zhang C and Xia X
Cronobacter sakazakii, an opportunity foodborne pathogen, could contaminate a broad range of food materials and cause life-threatening symptoms in infants. The bacterial envelope structure contribute to bacterial environment tolerance, biofilm formation and virulence in various in Gram-negative bacteria. DsbA and PepP are two important genes related to the biogenesis and stability of bacterial envelope. In this study, the DsbA and PepP were deleted in C. sakazakii to evaluate their contribution to stress tolerance and virulence of the pathogen. The bacterial environment resistance assays showed DsbA and PepP are essential in controlling C. sakazakii resistance to heat and desiccation in different mediums, as well as acid, osmotic, oxidation and bile salt stresses. DsbA and PepP also played an important role in regulating biofilm formation and motility. Furthermore, DsbA and PepP deletion weaken C. sakazakii adhesion and invasion in Caco-2, intracellular survival and replication in RAW 264.7. qRT-PCR results showed that DsbA and PepP of C. sakazakii played roles in regulating the expression of several genes associated with environment stress tolerance, biofilm formation, bacterial motility and cellular invasion. These findings indicate that DsbA and PepP played an important regulatory role in the environment resisitance, biofilm formation and virulence of C. sakazakii, which enrich understanding of genetic determinants of adaptability and virulence of the pathogen.
Improvement of in vivo iron bioavailability using mung bean peptide-ferrous chelate
Ding X, Xu M, Li H, Li X and Li M
There is an increasing amount of research into the development of a third generation of iron supplementation using peptide-iron chelates. Peptides isolated from mung bean were chelated with ferrous iron (MBP-Fe) and tested as a supplement in mice suffering from iron-deficiency anemia (IDA). Mice were randomly divided into seven groups: a group fed the normal diet, the IDA model group, and IDA groups treated with inorganic iron (FeSO), organic iron (ferrous bisglycinate, Gly-Fe), low-dose MBP-Fe(L-MBP-Fe), high-dose MBP-Fe(H-MBP-Fe), and MBP mixed with FeSO (MBP/Fe). The different iron supplements were fed for 28 days via intragastric administration. The results showed that MBP-Fe and MBP/Fe had ameliorative effects, restoring hemoglobin (HGB), red blood cell (RBC), hematocrit (HCT), and serum iron (SI) levels as well as total iron binding capacity (TIBC) and body weight gain of the IDA mice to normal levels. Compared to the inorganic (FeSO) and organic (Gly-Fe) iron treatments, the spleen coefficient and damage to liver and spleen tissues were significantly lower in the H-MBP-Fe and MBP/Fe mixture groups, with reparative effects on jejunal tissue. Gene expression analysis of the iron transporters Dmt 1 (Divalent metal transporter 1), Fpn 1 (Ferroportin 1), and Dcytb (Duodenal cytochrome b) indicated that MBP promoted iron uptake. These findings suggest that mung bean peptide-ferrous chelate has potential as a peptide-based dietary supplement for treating iron deficiency.
Novel hypothesis for infant methemoglobinemia: Survival and metabolism of nitrite-producers from vegetables under gastrointestinal stress and intestinal adhesion
Park SM and Rhee MS
Infants have digestive environments that are more favorable for microbial proliferation and subsequent endogenous nitrite production than those of adults, but direct evidence of this has been lacking. In this study, we propose a novel epidemiology of infant methemoglobinemia by demonstrating the risk posed by nitrite-producers in the gastrointestinal tract. Nitrite-producers from vegetables (n = 323) were exposed to stress factors of the gastrointestinal environment (gastric pH, intestinal bile salts, anaerobic atmosphere) reflecting 4 different postnatal age periods (Neonate, ≤1 month; Infant A, 1-3 months; Infant B, 3-6 months; Infant C, 6-12 months). "High-risk" strains with a nitrate-to-nitrite conversion rate of ≥1.3 %, the minimum rate corresponding to nitrite overproduction, under the Neonate stress condition were analyzed for intestinal adhesion. Among all the phyla, Pseudomonadota achieved the highest survival (P < 0.05; survival rate of 51.3-71.8 %). Possible cross-protection against bile resistance due to acid shock was observed for all the phyla. All the high-risk strains exhibited moderate autoaggregation (14.0-36.4 %), whereas only a few exhibited satisfactory surface hydrophobicity (>40 %). The Pantoea agglomerans strain strongly adhered to Caco-2 cells (7.4 ± 1.1 %). This study showed the ability of the Pantoea, Enterobacter, and Klebsiella strains to survive under gastrointestinal stress for ≤12 months, to excessively produce nitrite under neonatal stress conditions, and to settle in the human intestine. To our knowledge, this is the first study to reveal the role of the natural flora of vegetables in the epidemiology of infant methemoglobinemia through a multilateral approach.
Extrusion treatment of rice bran insoluble fiber generates specific niches favorable for Bacteroides during in vitro fermentation
Hou Y, Luo S, Li Z, Zhang H, Chen T and Liu C
To investigate the morphological changes of insoluble fiber and their effects on microbiota modulation, particularly Bacteroides, rice bran insoluble fibers were extruded at different feed moisture levels (E20, E40, and E60). The physicochemical properties and SEM revealed that E20 exhibited the highest water holding capacity and displayed the most fragmented edges. E40 had the highest swelling holding capacity and displayed the most lamellar gaps. E60 showed minimal change in physicochemical properties but had a rough surface. After 48h fermentation, E40 showed the highest levels of Bacteroides and SCFAs. E20 and E60 resulted in a modest increase in Bacteroides abundance. SEM showed that bacteria were attached to fragmented edges, loosened lamellar gaps, and rough surfaces of the extruded insoluble fibers. The results suggested that Bacteroides gained a competitive advantage within the extrusion treatment created structural changes. Extrusion treatment can be used to generate specific niches favorable for Bacteroides.
Polystyrene microplastics exposure reduces meat quality and disturbs skeletal muscle angiogenesis via thrombospondin 1
Yang Y, Liu H, Zou D, Ji F, Lv R, Wu H, Zhou H, Ren A, Xu T, Hou G and Hu C
Microplastics (MPs) pose a significant threat to livestock health. Yet, the roles of polystyrene MPs (PS-MPs) on meat quality and skeletal muscle development in pigs have not been fully determined. To investigate the effect of PS-MPs on skeletal muscle, piglets were given diets supplementation with 0 mg/kg (CON group), 75 mg/kg (75 mg/kg PS-MPs group), and 150 mg/kg PS-MPs (150 mg/kg PS-MPs group), respectively. The results indicated that the average daily gain (ADG) of piglets in the 150 mg/kg PS-MPs group was significantly lower than that in the CON group. No significant differences were observed in the final body weight and ADG between the CON group and the 75 mg/kg PS-MPs group. Piglets in the 150 mg/kg PS-MPs group exhibited decreased meat redness index and type I muscle fiber density. Metabolomic analysis revealed that the contents of meat flavor compounds carnosine, beta-alanine, palmitic acid, and niacinamide in muscle were lower in the 150 mg/kg PS-MPs group than in the CON group. Additionally, piglets subjected to 150 mg/kg PS-MPs exhibited impaired muscle angiogenesis. Further analysis indicated that PS-MPs exposure up-regulated thrombospondin 1 (THBS1) expression by inhibiting THBS1 mRNA and protein degradation, thereby disrupting skeletal muscle angiogenesis. These findings indicate that PS-MPs exposure adversely affects meat quality and hinders skeletal muscle angiogenesis in pigs, providing deeper insights into the detrimental effects of PS-MPs on meat quality and skeletal muscle development.
Influence of calcium sequestering salt type and concentration on the characteristics of processed cheese made from Gouda cheese of different ages
Kr Deshwal G, Fenelon M, Gómez-Mascaraque LG and Huppertz T
The effect of 90, 180 and 270 mEq/kg of the calcium sequestering salts (CSS) disodium phosphate (DSP), trisodium citrate (TSC) and sodium hexametaphosphate (SHMP) on the solubilisation of proteins and minerals and the rheological and textural properties of processed cheese (PC) prepared from Gouda cheese ripened for 30-150 d at 8°C was studied. The solubilisation of individual caseins and Ca and the maximum loss tangent during temperature sweeps of PC made from Gouda cheese increased, while hardness of PC decreased with ripening duration of the Gouda cheese. Levels of soluble Ca in PC increased with increasing concentration of TSC and SHMP, but decreased with increasing concentration of DSP. The solubilisation of casein and Ca due to ripening of Gouda cheese used for manufacturing PC could explain the changes in texture and loss tangent of PC. The results suggest that DSP, TSC or SHMP in PC formulation can form insoluble Ca-phosphate, soluble Ca-citrate or insoluble casein-Ca-HMP complexes, respectively, that influence casein solubilisation differently and together with levels of residual intact casein determine the functional attributes of PC.
Buriti (Mauritia flexuosa) shell flour: Nutritional composition, chemical profile, and antioxidant potential as a strategy for valuing waste from native Brazilian fruits
Carlos de Sousa W, Alves Morais R and Damian Giraldo Zuniga A
The Cerrado is one of the most biodiverse biomes in the world, characterized by a wealth of native fruits with unique nutritional characteristics. In this sense, the social, economic, and environmental importance of fully utilizing food is widely recognized. Therefore, generally considered waste, fruit shells can be transformed into a coproduct with high added value. The objective of this work was to carry out a comprehensive assessment of the physicochemical properties, carbohydrate and fatty acid profile, phytochemical compounds, phenolic profile, and antioxidant potential of the recovered extracts of buriti (Mauritia flexuosa) shells in natura and dehydrated at 55 °C (flour). In addition, the functional properties were verified by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) from buriti shell flour. The results indicated high fiber content and energy value for the sample processed at 55 °C (58.95 g/100 g and 378.91 kcal/100 g, respectively) and low lipid and protein content (1.03 g/100 g and 1.39 g/100 g, respectively). Regardless of the sample analyzed, maltose was the majority sugar (37.33 - 281.01 g/100 g). The main fatty acids detected were oleic acid (61.33 - 62.08 %) followed by palmitic acid (33.91 - 34.40 %). The analysis of the mineral profile demonstrated that the samples did not differ significantly from each other, showing that the drying process did not interfere with the results obtained (p ≤ 0.05). The analysis of individual phenolics allowed the identification of six phenolic compounds in buriti shells. However, it is possible to observe that the drying method had a positive and significant influence on the phenolic profile (p ≤ 0.05), with chlorogenic acid (2.63 - 8.27 mg/100 g) and trigonelline (1.06 - 41.52 mg/100 g), the majority compounds. On the other hand, it is important to highlight that buriti shells have a high content of carotenoids, mainly β-carotene (27.18 - 62.94 µg/100 g) and α-carotene (18.23 - 60.28 µg/100 g), also being positively influenced by the drying process at 55 °C (p ≤ 0.05). The dried shells showed a high content of phytochemical compounds and high antioxidant activity based on the different methods tested. The results show that buriti shell flour can be fully utilized and has nutritional and chemical aspects that can be applied to develop new sustainable, nutritious, and functional food formulations.
Development of a lexicon for the sensory description of edible insects commercially available in Australia
Bless I, Bastian SEP, Gould J, Yang Q and Wilkinson KL
Sensory lexicons provide an important tool for describing the sensory properties of emerging, unfamiliar foods such as edible insects. This study sought to establish and validate a sensory lexicon for the description and differentiation of edible insects commercially available in Australia and prepared using common preservation and cooking methods (freeze-drying, hot-air drying, roasting, sautéing and deep-frying). Five species were evaluated, including house crickets (Acheta domesticus), yellow mealworm larvae (Tenebrio molitor), king mealworm larvae (Zophobas morio), tyrant ants (Iridomyrmex spp.) and green tree ants (Oecophylla smaragdina). Following generic descriptive sensory analysis methods, a trained panel (n=8) developed a sensory lexicon of 29 aroma and flavour descriptors, and 16 texture descriptors. Vocabulary were then categorised and ordered to generate a sensory wheel. Due to a lack of cross-over in sensory attributes between species, sub-categories of species-specific vocabulary were also generated for each insect. The lexicon enabled sensory profiling of commercially available edible insect samples which revealed large variation in aroma, flavour, and texture attributes due to both species and preparation method. This work provides a platform for development of a globally relevant edible insect sensory lexicon. International collaboration will enable expansion of the lexicon for use with other insect species and preparation methods, insect-derived ingredients (such as insect powder, defatted insect powder and textured insect protein) and in different cultural settings. As the industry grows, the applicability of vocabulary for differentiating within species and between competitive products should also be assessed.
Impact of quercetin conjugation using alkaline and free radical methods with tandem ultrasonication on the functional properties of camel whey and its hydrolysates
Baba WN, Mudgil P, Mac Regenstein J and Maqsood S
The structural and functional properties of whey-quercetin and whey hydrolysate-quercetin conjugates synthesized using alkaline and free radical-mediated methods (AM and FRM) coupled with sonication were studied. FTIR showed new peaks at 3000-3500 cm (N-H stretching regions) and the 1000-1100 cm region with the conjugates. Conjugation increased the random coils and α-helix content while decreasing the β-sheets and turns. It also increased the particle size and surface hydrophobicity which was significantly (p < 0.05) higher in AM than FRM conjugates. AM conjugates had higher radical scavenging activity but lower quercetin content than FRM conjugates. Overall, the functional properties of whey-quercetin conjugates were better than whey hydrolysate-quercetin conjugates. However, hydrolysate conjugates had significantly higher denaturation temperatures irrespective of the method of production. Sonication improved the radical scavenging activity and quercetin content of FRM conjugates while it decreased both for AM conjugates. This study suggested that whey-quercetin conjugates generally had better quality than whey hydrolysate conjugates and sonication tended to further improve these properties. This study highlights the potential for using camel whey or whey hydrolysate-quercetin conjugates to enhance the functional properties of food products in the food industry.
Microbiological characterization of kombucha and biocellulose film produced with black tea and cocoa bean shell infusion
de Oliveira Duarte FA, Ramos KK, Gini C, Morasi RM, Silva NCC and Efraim P
The food industry is increasingly striving to produce probiotics-based food and beverages using sustainable processes. Therefore, the use of by-products in product development has been investigated by several authors. The aim of this work was to investigate the effects of cocoa bean shell infusion in the production of kombucha through microbiological and genetic characterization. Three beverage formulations were prepared, one based on black tea (KBT), one based on cocoa bean shell infusion (KCS) and one containing 50 % black tea and 50 % cocoa shell infusion (KBL). The infusions were prepared with water, filtered, and sucrose was added. They were then homogenized and a portion of finished kombucha and SCOBY (symbiotic culture of bacteria and yeast) were added. Fermentation took place for 13 days and aliquots were collected every three days for physicochemical and microbial count analyses. Samples from the last day of fermentation were sent for DNA sequencing, extraction and quantification. The results were subjected to analysis of variance and compared by using Tukey's test (p < 0.05). The results show that there was a significant decrease in pH over time in all samples, while the titratable acidity increased, indicating an acidification of the beverage due to the production of organic acids. There was an increase in lactic acid bacterial colonies in all the formulations, which have a probiotic nature and are not always found in this type of beverage. Regarding the taxonomic classification of the samples, microorganisms of the kingdoms Fungi and Bacteria, of the families Saccharomycetaceae and Acetobacteraceae, were found in KBT, KCS and KBL, but with different microbiological compositions, with different amounts of yeasts and bacteria. Therefore, the use of by-products such as cocoa bean shell in the production of kombucha can contribute to the reduction of waste in the food industry and, at the same time, accelerate fermentation increasing the presence of lactic acid bacteria when compared to black tea.
"Finding a common definition of heparin resistance in adult cardiac surgery: Communication from the ISTH SSC Subcommittee on Perioperative and Critical Care Thrombosis and Hemostasis": comment from Mansour et al
Mansour A, Mullier F, Lecompte T, de Maistre E, Gouin-Thibault I and Hardy M
"Finding a common definition of heparin resistance in adult cardiac surgery: Communication from the ISTH SSC Subcommittee on Perioperative and Critical Care Thrombosis and Hemostasis": reply
Sniecinski RM and Levy JH
"Finding a common definition of heparin resistance in adult cardiac surgery: Communication from the ISTH SSC Subcommittee on Perioperative and Critical Care Thrombosis and Hemostasis": comment from Boissier et al
Boissier E, Rigal JC, Rozec B and Lakhal K
Robotic arm-assisted conversion of unicompartmental knee arthroplasty to total knee arthroplasty
Mancino F, Fontalis A, Grandhi TSP, Magan A, Plastow R, Kayani B and Haddad FS
Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up.
Redisplacement of reduced distal radius fractures in adults: does the type of casting play a role? The CAST study, a multicentre cluster randomized controlled trial
Barvelink B, Reijman M, Smidt S, Miranda Afonso P, Verhaar JAN, Colaris JW, , , van Beek F, Bouwhuis MG, Bruijninckx MMM, Greeven APA, Gosens T, Kok MJ, Kokke MC, Kraan GA, van Lakwijk K, Leijnen M, van Loon M, van Rijssel DA, Schep NWL, Scholtens L, Wijffels MME, Slebioda N, van der Zwaal P and Zwets E
It is not clear which type of casting provides the best initial treatment in adults with a distal radial fracture. Given that between 32% and 64% of adequately reduced fractures redisplace during immobilization in a cast, preventing redisplacement and a disabling malunion or secondary surgery is an aim of treatment. In this study, we investigated whether circumferential casting leads to fewer the redisplacement of fewer fractures and better one-year outcomes compared with plaster splinting.
Clinical evaluation of new bone formation during limb lengthening in children using ultrasound combined with superb microvascular imaging
Yaxier N, Zhang Y, Song J and Ning B
Given the possible radiation damage and inaccuracy of radiological investigations, particularly in children, ultrasound and superb microvascular imaging (SMI) may offer alternative methods of evaluating new bone formation when limb lengthening is undertaken in paediatric patients. The aim of this study was to assess the use of ultrasound combined with SMI in monitoring new bone formation during limb lengthening in children.
Are there patients with an intracapsular fracture of the hip who may benefit from an uncemented hemiarthroplasty?
Bolbocean C, Hattab Z, O'Neill S and Costa ML
Cemented hemiarthroplasty is an effective form of treatment for most patients with an intracapsular fracture of the hip. However, it remains unclear whether there are subgroups of patients who may benefit from the alternative operation of a modern uncemented hemiarthroplasty - the aim of this study was to investigate this issue. Knowledge about the heterogeneity of treatment effects is important for surgeons in order to target operations towards specific subgroups who would benefit the most.
Decompression alone or decompression with fusion for lumbar spinal stenosis: five-year clinical results from a randomized clinical trial
Karlsson T, Försth P, Öhagen P, Michaëlsson K and Sandén B
We compared decompression alone to decompression with fusion surgery for lumbar spinal stenosis, with or without degenerative spondylolisthesis (DS). The aim was to evaluate if five-year outcomes differed between the groups. The two-year results from the same trial revealed no differences.
The Core outcome Clubfoot (CoCo) study: relapse, with poorer clinical and quality of life outcomes, affects 37% of idiopathic clubfoot patients
Gelfer Y, Cavanagh SE, Bridgens A, Ashby E, Bouchard M, Leo DG and Eastwood DM
There is a lack of high-quality research investigating outcomes of Ponseti-treated idiopathic clubfeet and correlation with relapse. This study assessed clinical and quality of life (QoL) outcomes using a standardized core outcome set (COS), comparing children with and without relapse.
Extranodal diffuse large B-cell lymphoma presenting with extensive organ involvement
Kim K, Ziyeh S and Kim P
Extranodal involvement in diffuse large B-cell lymphoma (DLBCL) is defined as disease outside of the lymph nodes and occurs in up to one-third of patients, though multiorgan extranodal involvement is rare. Here, we describe a case of a patient presenting with widely metastatic lesions, including involvement of the lung, parotid gland, breast, pancreas, femur and multiple soft tissue masses, with initial concern for primary breast malignancy. Breast pathology and imaging were consistent with triple-expressor, double-hit stage IV high-grade B-cell lymphoma with extensive extranodal involvement. Extranodal involvement is a poor prognostic factor associated with high rates of treatment failure, and novel therapies targeting CD19 are currently being studied for relapsed and refractory DLBCL. Extranodal disease is a complex entity that can involve virtually any organ system and should be considered for new presentations of malignancy.
Autoantibody-positivity before and seroconversion during treatment with anti-PD-1 is associated with immune-related adverse events in patients with melanoma
Borgers JSW, van Wesemael TJ, Gelderman KA, Rispens T, Verdegaal EME, Moes DJAR, Korse CM, Kapiteijn E, Welters MJP, van der Burg SH, van Houdt WJ, van Thienen JV, Haanen JBAG and van der Woude D
Treatment with the immune checkpoint inhibitor anti-programmed cell death protein-1 (PD-1) often causes immune-related adverse events (irAEs). Since irAEs resemble autoimmune diseases, autoantibodies might play a role and could potentially be used to identify patients at risk. Therefore, we investigated the association between autoantibody-positivity and toxicity as well as clinical response in patients with melanoma treated with anti-PD-1.
[Oral language development in maltreated and foster children]
Gauthier P, Laurans L, Dubuisson O, Aghababian V, Fernandez A, Krouch T and Guivarch J
Language disorders, which are still very poorly detected, are often present in abused children. While the consequences are well known and long-lasting, little is known about the development and specific characteristics of these children, depending on where they were placed, the type of abuse they suffered and the age at which they were placed. This finding led to a review of the literature aimed at better defining the state of knowledge on the subject, for the benefit of better detection and treatment.
[Supporting perinatal professionals]
Golse B
No professional, no team can be a caregiver if they themselves are not well supported, well "cared for", i.e. if they are not well looked after. Professional support is therefore not a luxury, but a sine qua non of quality care and psychological care. After a few reminders about practice analysis and supervision, the impact of the baby's functioning on that of professionals (an impact to be taken into account in terms of their support) is considered, before tackling the concept of intransitive demand, which is also to be considered in the work of supervision.
[The place of gentleness in joint perinatal psychiatric care]
Sananès S
The complexity and specificity of joint care in perinatal psychiatry call for a rethinking of gentleness. Allowing oneself to make it the object of reflection in its own right means summoning up an essential dimension of welcoming, carrying and meeting the other, which are at the heart of support. Articulating adversity and fragility, creativity and destructiveness, gentleness is a quality, a texture on which a care team can rely from both a clinical and an institutional point of view.
[Perinatal homecare in a context of adversity]
Segor N, Lecarpentier L, Baubet T and Drain É
The parent-baby unit at the Jean-Verdier hospital in Seine-Saint-Denis offers outpatient and mobile care. Migrant families in extremely precarious situations, often with traumatic histories, are met. Home visits facilitate access and continuity of care. Nonetheless, this work and the broader context in which it is carried out have an impact on the therapists' experience and care methods. This makes it all the more essential to have a co-therapy system in place, to take primary needs into account and to support mothering care in therapeutic work.
[Activities of the "Amae" mobile team for early intervention in perinatal care]
Letot J, Beaulieu A, Hagbarth I, Noleau C, Marchina B, Guetta M and Benarous X
In 2023, the "Amae" mobile perinatal early intervention team in the child psychiatry department of the Pitié-Salpêtrière hospital followed 49 families for almost 412 home visits. The coexistence of biopsychosocial vulnerability factors was the rule. Generally requested by maternity hospitals (45% in antenatal care), the team offers care focused on parent-child bonds during visits at home, and facilitates the articulation of the different fields involved in contexts at high risk of care breakdown.
[Psyperinatal mobile teams: News and prospects]
Dugnat M, Le Treut L, Sananès S, Brengard D and Guivarch J
Perinatal psychiatry is now defined in the French Public Health Code as joint parent-baby care. It focuses on parent-baby interactions, the baby's development and the parents' psychological health. "Mobile teams" for joint (parent-baby) care, the very first of which date back to the 1990s, have been developed modestly thanks to the call for perinatal psychiatry projects in 2021 and those for child and adolescent psychiatry since 2019. These mobile units complement full-time outpatient and inpatient joint care units.
[Not Available]
Hagbarth Legrée I
[The cultural diversity of professionals in migrant care]
Leveugle L and Radjack R
A qualitative study was carried out with five professionals in a pediatric intensive care unit in 2022. Semi-structured interviews were used to find out how they felt about patients from their own culture, and about the role of their mother tongue in hospital care. Caregivers find it difficult to bring their own culture to the fore when caring for their patients. A description of the obstacles they encounter, as well as the advantages, is included.
close chatgpt icon
ChatGPT

Enter your request.

Psychiatry AI RAISR 4D System Psychiatry + Mental Health