Welcome to PsychiatryAI.com: [PubMed] - Psychiatry AI Latest

Global Health

People living in prison must be included in country monitoring systems to accurately assess HCV elimination progress
Tavoschi L, Cocco N, Alves da Costa F, Lloyd AR and Kinner SA
Relative Cost and Infectious Days Averted Associated With Rapid Gonorrhea and Chlamydia Testing Among Men Who Have Sex With Men
Welford E, Martin TCS, Martin NK, Tilghman W and Little SJ
Standard-of-care nucleic acid amplification tests (routine NAATs) for Neisseria gonorrhoeae (GC) and Chlamydia trachomatis (CT) can take several days to result and therefore delay treatment. Rapid point-of-care GC/CT NAAT (rapid NAAT) could reduce the time to treatment and therefore onward transmission. This study evaluated the incremental cost per infectious day averted and overall cost of implementation associated with rapid compared with routine NAAT.
International Nurses Day 2024: The economic power of care
Jackson D, Aveyard H, Brooke J, Commodore-Mensah Y, Noyes J, Sharps P, Smith GD, Timmins F and Yu D
The social-structural contexts of cannabis consumption and harm reduction among young Nigerian women
Nelson EU and Nnam MU
Young women remain under-represented in the research literature on young people's cannabis use. This study explored cannabis use and harm reduction practices of young Nigerian women.
Switch to fixed-dose doravirine (100 mg) with islatravir (0·75 mg) once daily in virologically suppressed adults with HIV-1 on bictegravir, emtricitabine, and tenofovir alafenamide: 48-week results of a phase 3, randomised, controlled, double-blind, non-inferiority trial
Mills AM, Rizzardini G, Ramgopal MN, Osiyemi OO, Bogner JR, Hagins DP, Paredes R, Reynes J, Rockstroh JK, Carr A, Su FH, Klopfer SO, Eves K, Plank RM, Correll T and Fox MC
Doravirine and islatravir is an investigational, once-daily regimen with high antiviral potency, favourable safety and tolerability, and a low propensity for resistance. We investigated a switch from bictegravir, emtricitabine, and tenofovir alafenamide to doravirine (100 mg) and islatravir (0·75 mg) in virologically suppressed adults with HIV-1.
Identification of bacterial determinants of tuberculosis infection and treatment outcomes: a phenogenomic analysis of clinical strains
Stanley S, Spaulding CN, Liu Q, Chase MR, Ha DTM, Thai PVK, Lan NH, Thu DDA, Quang NL, Brown J, Hicks ND, Wang X, Marin M, Howard NC, Vickers AJ, Karpinski WM, Chao MC, Farhat MR, Caws M, Dunstan SJ, Thuong NTT and Fortune SM
Bacterial diversity could contribute to the diversity of tuberculosis infection and treatment outcomes observed clinically, but the biological basis of this association is poorly understood. The aim of this study was to identify associations between phenogenomic variation in Mycobacterium tuberculosis and tuberculosis clinical features.
Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: A review
Cao Y, Bi L, Chen Q, Liu Y, Zhao H, Jin L and Peng R
At present, the quantity of micro/nano plastics in the environment is steadily rising, and their pollution has emerged as a global environmental issue. The tendency of their bioaccumulation in aquatic organisms (especially fish) has intensified people's attention to their persistent ecotoxicology. This review critically studies the accumulation of fish in the intestines of fish through active or passive intake of micro / nano plastics, resulting in their accumulation in intestinal organs and subsequent disturbance of intestinal microflora. The key lies in the complex toxic effect on the host after the disturbance of fish intestinal microflora. In addition, this review pointed out the characteristics of micro / nano plastics and the effects of their combined toxicity with adsorbed pollutants on fish intestinal microorganisms, in order to fully understand the characteristics of micro / nano plastics and emphasize the complex interaction between MNPs and other pollutants. We have an in-depth understanding of MNPs-induced intestinal flora disorders and intestinal dysfunction, affecting the host's systemic system, including immune system, nervous system, and reproductive system. The review also underscores the imperative for future research to investigate the toxic effects of prolonged exposure to MNPs, which are crucial for evaluating the ecological risks posed by MNPs and devising strategies to safeguard aquatic organisms.
Guideline No. 450: Care of Pregnant Women Living with HIV and Interventions to Reduce Perinatal Transmission
Atkinson A, Tulloch K, Boucoiran I and Money D
This guideline provides an update on the care of pregnant women living with HIV and the prevention of perinatal HIV transmission. This guideline is a revision of the previous guideline, No. 310 Guidelines for the Care of Pregnant Women Living With HIV and Interventions to Reduce Perinatal Transmission, and includes an updated review of the literature with contemporary recommendations.
ncRNAs and Their Impact on Dopaminergic Neurons: Autophagy Pathways in Parkinson's Disease
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Pant K, Ali H, Paudel KR, Dureja H, Singh TG, Singh SK and Dua K
Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.
Fighting against Clostridioides difficile infection: Current medications
Quan M, Zhang X, Fang Q, Lv X, Wang X and Zong Z
Clostridioides difficile (formerly Clostridium difficile) has been regarded as an "urgent threat" and a significant global health problem, as life-threatening diarrhea and refractory recurrence are common in patients with C. difficile infection (CDI). Unfortunately, the available anti-CDI drugs are limited. Recent guidelines recommend fidaxomicin and vancomycin as first-line drugs to treat CDI, bezlotoxumab to prevent recurrence, and fecal microbiota transplantation (FMT) for rescue treatment. Currently, researchers are investigating therapeutic antibacterial drugs (e.g., teicoplanin, ridinilazole, ibezapolstat, surotomycin, cadazolid, and LFF571), preventive medications against recurrence (e.g., Rebyota, Vowst, VP20621, VE303, RBX7455, and MET-2), primary prevention strategies (e.g., vaccine, ribaxamase, and DAV132) and other anti-CDI medications in the preclinical stage (e.g., Raja 42, Myxopyronin B, and bacteriophage). This narrative review summarizes current medications, including newly marketed drugs and products in development against CDI, to help clinicians treat CDI appropriately and to call for more research on innovation.
Holistic insight Mechanism of ozone-based oxidation process for wastewater treatment
Jamali GA, Devrajani SK, Memon SA, Qureshi SS, Anbuchezhiyan G, Mubarak NM, Shamshuddin SZM and Siddiqui MTH
The world is facing water crises because freshwater scarcity has become a global issue due to rapid population growth, resulting in the need for more industries, agriculture, and domestic sectors. Therefore, it is challenging for scientists and environmental engineers to treat wastewater with cost-effective treatment techniques. As compared to conventional processes (physical, chemical, and biological), advanced oxidation processes (AOP) play an essential role in the removal of wastewater contaminants, with the help of a powerful hydroxyl (OH•) through oxidation reactions. This review study investigates the critical role of O-based Advanced Oxidation Processes (AOPs) in tackling the complex difficulties of wastewater treatment. Effective treatment methods are critical, with wastewater originating from various sources, including industrial activity, pharmaceutical manufacturing, agriculture, and a wide range of toxins. O-based AOPs appear to be powerful therapies capable of degrading a wide range of pollutants, including stubborn organics, medicines, and pesticides, reducing environmental and human health risks. This review sheds light on their efficacy in wastewater treatment by explaining the underlying reaction mechanisms and applications of several O-based AOP processes, such as O, O/UV, and O/ HO. Ozone, a powerful oxidizing agent, stimulates the breakdown of complex chemical molecules by oxidation processes, which are aided further by synergistic combinations with ultraviolet (UV) radiation or hydrogen peroxide (HO). Notably, while ozonation alone may not always produce the best outcomes, it acts as an essential pretreatment step prior to traditional treatments, increasing total treatment efficiency. Furthermore, O-based AOPs' transformational capacity to convert organic chemicals into simpler, more stable inorganic forms with little sludge creation emphasizes its sustainability and environmental benefits. This study sheds light on the processes, uses, and benefits of O-based AOPs, presenting practical solutions for sustainable water management and environmental protection. It is a valuable resource for academics, engineers, and politicians looking for new ways to combat wastewater contamination and protect water resources.
How do we understand the value of drug checking as a component of harm reduction services? A qualitative exploration of client and provider perspectives
Moran L, Ondocsin J, Outram S, Ciccarone D, Werb D, Holm N and Arnold EA
Mortality related to opioid overdose in the U.S. has risen sharply in the past decade. In California, opioid overdose death rates more than tripled from 2018 to 2021, and deaths from synthetic opioids such as fentanyl increased more than seven times in those three years alone. Heightened attention to this crisis has attracted funding and programming opportunities for prevention and harm reduction interventions. Drug checking services offer people who use drugs the opportunity to test the chemical content of their own supply, but are not widely used in North America. We report on qualitative data from providers and clients of harm reduction and drug checking services, to explore how these services are used, experienced, and considered.
Hesitancy towards R21/Matrix-M malaria vaccine among Ghanaian parents and attitudes towards immunizing non-eligible children: a cross-sectional survey
Hussein MF, Kyei-Arthur F, Saleeb M, Kyei-Gyamfi S, Abutima T, Sakada IG and Ghazy RM
The newly developed malaria vaccine called "R21/Matrix-M malaria vaccine" showed a high safety and efficacy level, and Ghana is the first country to approve this new vaccine. The present study aimed to evaluate the rate of vaccine hesitancy (VH) towards the newly developed malaria vaccine among parents who currently have children who are not eligible for the vaccine but may be eligible in the near future. Additionally, the study aimed to identify the factors that could potentially influence VH.
Nutrition policy or price stabilisation policy: which policy is more effective for nutrition outcomes?
Razakamanana MV, Rakotonirainy M and Ramiandrisoa TO
Malnutrition remains a global problem and is increasing with the emergence of the COVID-19 pandemic. In Madagascar, half of the children under five years of age suffer from stunting. However, since 2006, vitamin A supplementation campaigns, deworming and free vaccinations have been implemented within the framework of the Mother and Child Health Week (MCHW) to strengthen the fight against micronutrient deficiencies and reduce mortality. On the other hand, rice, the staple food of the Malagasy population, can provide some of the micronutrients necessary for good nutrition. However, the country's rice production is still insufficient, and the price has been rising steadily in recent years. This has led the government to resort to the policy of stabilizing rice prices through imported rice in 2017 and 2018. The aim of this paper is therefore to analyse the effects of these policies on the prevalence of malnutrition among children under five years of age in Madagascar. Which policy would be more effective: the nutrition policy or the price stabilisation policy?
Comparative analysis of midgut bacterial communities in Chikungunya virus-infected and non-infected Aedes aegypti Thai laboratory strain mosquitoes
Siriyasatien P, Intayot P, Chitcharoen S, Sutthanont N, Boonserm R, Ampol R, Schmidt-Chanasit J and Phumee A
Chikungunya virus (CHIKV) poses a significant global health threat, re-emerging as a mosquito-transmitted pathogen that caused high fever, rash, and severe arthralgia. In Thailand, a notable CHIKV outbreak in 2019-2020 affected approximately 20,000 cases across 60 provinces, underscoring the need for effective mosquito control protocols. Previous studies have highlighted the role of midgut bacteria in the interaction between mosquito vectors and pathogen infections, demonstrating their ability to protect the insect from invading pathogens. However, research on the midgut bacteria of Aedes (Ae.) aegypti, the primary vector for CHIKV in Thailand remains limited. This study aims to characterize the bacterial communities in laboratory strains of Ae. aegypti, both infected and non-infected with CHIKV. Female mosquitoes from a laboratory strain of Ae. aegypti were exposed to a CHIKV-infected blood meal through membrane feeding, while the control group received a non-infected blood meal. At 7 days post-infection (dpi), mosquito midguts were dissected for 16S rRNA gene sequencing to identify midgut bacteria, and CHIKV presence was confirmed by E1-nested RT-PCR using mosquito carcasses. The study aimed to compare the bacterial communities between CHIKV-infected and non-infected groups. The analysis included 12 midgut bacterial samples, divided into three groups: CHIKV-infected (exposed and infected), non-infected (exposed but not infected), and non-exposed (negative control). Alpha diversity indices and Bray-Curtis dissimilarity matrix revealed significant differences in bacterial profiles among the three groups. The infected group exhibited an increased abundance of bacteria genus Gluconobacter, while Asaia was prevalent in both non-infected and negative control groups. Chryseobacterium was prominent in the negative control group. These findings highlight potential alterations in the distribution and abundance of gut microbiomes in response to CHIKV infection status. This study provides valuable insights into the dynamic relationship between midgut bacteria and CHIKV, underscoring the potential for alterations in bacterial composition depending on infection status. Understanding the relationships between mosquitoes and their microbiota holds promise for developing new methods and tools to enhance existing strategies for disease prevention and control. This research advances our understanding of the circulating bacterial composition, opening possibilities for new approaches in combating mosquito-borne diseases.
Ocular biomarkers: useful incidental findings by deep learning algorithms in fundus photographs
Martin E, Cook AG, Frost SM, Turner AW, Chen FK, McAllister IL, Nolde JM and Schlaich MP
Artificial intelligence can assist with ocular image analysis for screening and diagnosis, but it is not yet capable of autonomous full-spectrum screening. Hypothetically, false-positive results may have unrealized screening potential arising from signals persisting despite training and/or ambiguous signals such as from biomarker overlap or high comorbidity. The study aimed to explore the potential to detect clinically useful incidental ocular biomarkers by screening fundus photographs of hypertensive adults using diabetic deep learning algorithms.
Mapping the Global Spread of T. indotineae: An Update on Antifungal Resistance, Mutations, and Strategies for Effective Management
Gupta AK, Polla Ravi S, Wang T, Bakotic WL and Shemer A
The global spread of Trichophyton indotineae presents a pressing challenge in dermatophytosis management. This systematic review explores the current landscape of T. indotineae infections, emphasizing resistance patterns, susceptibility testing, mutational analysis, and management strategies.
Degradation of organic mercury in high salt environments by a marine aerobic bacterium Alteromonas macleodii KD01
Zhang D, Chu B, Yang Q, Zhang X, Fang Y, Liu G, Liang L, Guo Y, Yin Y, Cai Y and Jiang G
Mercury (Hg), particularly organic mercury, poses a global concern due to its pronounced toxicity and bioaccumulation. Bioremediation of organic mercury in high-salt wastewater faces challenges due to the growth limitations imposed by elevated Cl and Na concentrations on microorganisms. In this study, an isolated marine bacterium Alteromonas macleodii KD01 was demonstrated to degrade methylmercury (MeHg) efficiently in seawater and then was applied to degrade organic mercury (MeHg, ethylmercury, and thimerosal) in simulated high-salt wastewater. Results showed that A. macleodii KD01 can rapidly degrade organic mercury (within 20 min) even at high concentrations (>10 ng/mL), volatilizing a portion of Hg from the wastewater. Further analysis revealed an increased transcription of organomercury lyase (merB) with rising organic mercury concentrations during the exposure process, suggesting the involvement of mer operon (merA and merB). These findings highlight A. macleodii KD01 as a promising candidate for addressing organic mercury pollution in high-salt wastewater.
International cooperation in radiology training: A multipronged approach
Aluja-Jaramillo F, Gutiérrez FR, Previgliano C, Faican F, Luna-Alcalá A, Rossi I and Bhalla S
Medical imaging has undergone significant technical advancements in recent years, posing a considerable challenge for radiologists to stay up-to-date with emerging modalities and their applications in daily practice. This challenge is even more daunting in developing countries with limited resources compared to the US and other developed nations with greater economic assets. The collaboration between the United States and other advanced nations with radiological institutions in Latin America has been a significant achievement in the pursuit of new opportunities for continuous medical education. The aim of this study was to evaluate the effectiveness of international collaborations among Spanish-speaking Latin American institutions and radiologists through a survey.
Antimicrobial Therapeutic Drug Monitoring in critically ill adult patients -an international perspective on access, utilisation, and barriers
Williams P, Cotta MO, Tabah A, Sandaradura I, Kanji S, Scheetz MH, Imani S, Elhadi M, Pardos SL, Schellack N, Sanches C, Timsit JF, Xie J, Farkas A, Wilks K and Roberts JA
Therapeutic drug monitoring (TDM) is an effective method for individualizing antimicrobial therapy in critically ill patients. The 2021 ADMIN-ICU survey studied a wide range of intensive care unit (ICU) clinicians worldwide to gain their perspectives on antimicrobial TDM. This paper reports the responses from this survey relating to TDM access, utilisation, barriers, and clinical value.
The 67th UN CND-upholding human rights in drug policy
Ahmad A, Kamarulzaman A, Kazatchkine M, Dreifuss R and Clark H
Intentional self-harm and death by suicide in body dysmorphic disorder:A nationwide cohort study
Rautio D, Isomura K, Bjureberg J, Rück C, Lichtenstein P, Larsson H, Kuja-Halkola R, Chang Z, D'Onofrio BM, Brikell I, Sidorchuk A, Mataix-Cols D and Fernández de la Cruz L
Body dysmorphic disorder (BDD) is thought to be associated with considerable suicide risk. This nationwide cohort study quantified the risks of intentional self-harm - including non-suicidal self-injuries and suicide attempts - and death by suicide in BDD.
Strengthened global capacities on climate change and health: WHO training in Madrid
Letter to the editor regarding Hall et al. (2023): Fluoride exposure and hypothyroidism in a Canadian pregnancy cohort
Hall M, Lanphear B, Chevrier J, Hornung R, Green R, Goodman C, Ayotte P, Martinez-Mier EA, Zoeller RT and Till C
"Mpox in MSM: Tackling Stigma, Minimizing Risk Factors, Exploring Pathogenesis, and Treatment Approaches"
Acharya A, Kumar N, Singh K and Byrareddy SN
Mpox is a zoonotic disease caused by the monkeypox virus (MPV), primarily found in Central and West African countries. The typical presentation of the disease before the 2022 mpox outbreak includes a febrile prodrome 5-13 days post-exposure, accompanied by lymphadenopathy, malaise, headache, and muscle aches. Unexpectedly, during the 2022 outbreak, several cases of atypical presentations of the disease were reported, such as the absence of prodromal symptoms and the presence of genital skin lesions suggestive of sexual transmission. As per the World Health Organization (WHO), as of March 20, 2024, 94,707 cases of mpox were reported worldwide, resulting in 181 deaths (22 in African endemic regions and 159 in non-endemic countries). The United States Centers for Disease Control and Prevention (CDC) reports a total of 32,063 cases (33.85% of total cases globally), with 58 deaths (32.04% of global deaths) due to mpox. Person-to-person transmission of mpox can occur through respiratory droplets and sustained close contact. However, during the 2022 outbreak of mpox, a high incidence of anal and perianal lesions among MSMs indicated sexual transmission of MPV as a major route of transmission. Since MSMs are disproportionately at risk for HIV transmission, this review discusses the risk factors, transmission patterns, pathogenesis, vaccine, and treatment options for mpox among MSM and people living with HIV (PLWH). Furthermore, we provide a brief perspective on the evolution of the MPV in immunocompromised people like PLWH.
Rising Testicular Cancer Incidence in Spain Despite Declining Mortality: An Age-Period-Cohort Analysis
Cayuela L, Fernández SC, Pereyra-Rodríguez JJ, Hernández-Rodríguez JC and Cayuela A
Testicular cancer, primarily affecting young men, has seen an alarming rise globally. This study delves into incidence and mortality trends in Spain from 1990 to 2019 using the Global Burden of Disease (GBD) database and the Age-Period-Cohort (A-P-C) model.
Prevalence and molecular characterization of hepatitis E virus (HEV) from wild rodents in Hubei Province, China
Ding Q, Hu B, Yao X, Gan M, Chen D, Zhang N, Wei J, Cai K and Zheng Z
Hepatitis E, caused by the hepatitis E virus (HEV), is a global public health issue. Low similarity between the gene sequences of mouse and human HEV led to the belief that the risk of human infection was low. Recent reports of chronic and acute hepatitis E caused by murine HEV infection in humans in Hong Kong have raised global concerns. Therefore, it is crucial to investigate the epidemiology and prevalence of HEV in China. We comprehensively analyzed different rodent HEV strains to understand rocahepevirus occurrence in Hubei Province, China. The HEV positivity rate for was 6.43% (73/1136). We identified seven near-full-length rocahepevirus strains and detected rat HEV antigens in tissues from different mouse species. HEV has extensive tissue tropism and a high viral load in the liver. We highlight the genetic diversity of HEVs in rodents and underscore the importance of paying attention to their variation and evolution.
Persistent fatigue in post-acute COVID syndrome is associated with altered T1 MRI texture in subcortical structures: a preliminary investigation
Churchill NW, Roudaia E, Chen JJ, Sekuler A, Gao F, Masellis M, Lam B, Cheng I, Heyn C, Black SE, MacIntosh BJ, Graham SJ and Schweizer TA
Post-acute COVID syndrome (PACS) is a global health concern and is often associated with debilitating symptoms. Post-COVID fatigue is a particularly frequent and troubling issue, and its underlying mechanisms remain incompletely understood. One potential contributor is micropathological injury of subcortical and brainstem structures, as has been identified in other patient populations. Texture-based analysis (TA) may be used to measure such changes in anatomical MRI data. The present study develops a methodology of voxel-wise TA mapping in subcortical and brainstem regions, which is then applied to T1-weighted MRI data from a cohort of 48 individuals who had PACS (32 with and 16 without ongoing fatigue symptoms) and 15 controls who had cold and flu-like symptoms but tested negative for COVID-19. Both groups were assessed an average of 4-5 months post-infection. There were no significant differences between PACS and control groups, but significant differences were observed between those with and without fatigue symptoms in the PACS group. This included reduced texture energy and increased entropy, along with reduced texture correlation, cluster shade and profile in the putamen, pallidum, thalamus and brainstem. These findings provide new insights into the neurophysiological mechanisms that underlie PACS, with altered tissue texture as a potential biomarker of this debilitating condition.
Evaluation of genotoxic damage, production reactive oxygen and nitrogen species in Plasmodium yoelii yoelii exposed to sodium metavanadate
Casarrubias-Tabarez B, Rivera-Fernández N, Alarcón-Herrera N, Guerrero-Palomo G, Rojas-Lemus M, López-Valdez N, Anacleto-Santos J, Gonzalez-Villalva A, Ustarroz-Cano M and Fortoul TI
Malaria represents the greatest global health burden among all parasitic diseases, with drug resistance representing the primary obstacle to control efforts. Sodium metavanadate (NaVO) exhibits antimalarial activity against the Plasmodium yoelii yoelii (Pyy), yet its precise antimalarial mechanism remains elusive. This study aimed to assess the antimalarial potential of NaVO, evaluate its genotoxicity, and determine the production of reactive oxygen and nitrogen species (ROS/RNS) in Pyy. CD-1 mice were infected and divided into two groups: one treated orally with NaVO (10mg/kg/day for 4 days) and the other untreated. A 50% decrease in parasitemia was observed in treated mice. All experimental days demonstrated DNA damage in exposed parasites, along with an increase in ROS and RNS on the fifth day, suggesting a possible parasitostatic effect. The results indicate that DNA is a target of NaVO, but further studies are necessary to fully elucidate the mechanisms underlying its antimalarial activity.
Effectiveness of preventive treatment among different age groups and Mycobacterium tuberculosis infection status: a systematic review and individual-participant data meta-analysis of contact tracing studies
Martinez L, Seddon JA, Horsburgh CR, Lange C, Mandalakas AM and
Tuberculosis is a preventable disease. However, there is debate regarding which individuals would benefit most from tuberculosis preventive treatment and whether these benefits vary in settings with a high burden and low burden of tuberculosis. We aimed to compare the effectiveness of tuberculosis preventive treatment in exposed individuals of differing ages and Mycobacterium tuberculosis infection status while considering tuberculosis burden of the settings.
Nasal solitary chemosensory cells govern daily rhythm in mouse model of allergic rhinitis
Xu H, Guo L, Hao T, Guo X, Huang M, Cen H, Chen M, Weng J, Huang M, Wu Z, Qin Z, Yang J and Wu B
While the daily rhythm of allergic rhinitis (AR) has long been recognized, the molecular mechanism underlying this phenomenon remains enigmatic.
Switch to fixed-dose doravirine (100 mg) with islatravir (0·75 mg) once daily in virologically suppressed adults with HIV-1 on antiretroviral therapy: 48-week results of a phase 3, randomised, open-label, non-inferiority trial
Molina JM, Rizzardini G, Orrell C, Afani A, Calmy A, Oka S, Hinestrosa F, Kumar P, Tebas P, Walmsley S, Grandhi A, Klopfer S, Gendrano I, Eves K, Correll TA, Fox MC and Kim J
Doravirine and islatravir is an investigational, once-daily, single-tablet regimen with high antiviral potency, favourable safety and tolerability, and low propensity for resistance. We report week 48 results from a phase 3 trial evaluating switch from stable, oral antiretroviral therapy (ART) to the fixed combination of doravirine (100 mg) and islatravir (0·75 mg).
Clinical practice guidelines for osteoarthritis: caveats related to discrepancies in recommendations
Christensen R and Nelson AE
Nation-wide surveillance of ticks (Acari: Argasidae) on bats (Chiroptera) in Singapore
Kwak ML, Hitch AT, Low DHW, Borthwick SA, Markowsky G, McInnes D, Smith GJD, Nakao R and Mendenhall IH
Bats and ticks are important sources of zoonotic pathogens. Therefore, understanding the diversity, distribution, and ecology of both groups is crucial for public health preparedness. Soft ticks (Argasidae) are a major group of ectoparasites commonly associated with bats. The multi-host life cycle of many argasids make them important vectors of pathogens. Over nine years (2011-2020), surveillance was undertaken to identify the ticks associated with common bats in Singapore. During this period, the bat tick Ornithodoros batuensis was detected within populations of two cave roosting bat species: Eonycteris spelaea and Penthetor lucasi. We examined the relationship between bat species, roosting behaviour, and probability of O. batuensis infestation. We also estimated the relationship between bat life history variables (body condition index, sex, and age) on the probability of infestation and tick count. This represents the first detection of O. batuensis and the genus Ornithodoros within Singapore. We also provide evidence of the continued persistence of Argas pusillus in Singapore with the second local record.
Association of common maternal infections with birth outcomes: a multinational cohort study
He JR, Tikellis G, Paltiel O, Klebanoff M, Magnus P, Northstone K, Golding J, Ward MH, Linet MS, Olsen SF, Phillips GS, Lemeshow S, Qiu X, Hirst JE and Dwyer T
It is unclear whether common maternal infections during pregnancy are risk factors for adverse birth outcomes. We assessed the association between self-reported infections during pregnancy with preterm birth and small-for-gestational-age (SGA) in an international cohort consortium.
Phytosynthesis and characterization of tin-oxide nanoparticles (SnO-NPs) from Croton macrostachyus leaf extract and its application under visible light photocatalytic activities
Tasisa YE, Sarma TK, Sahu TK and Krishnaraj R
Nanotechnology is rapidly becoming more and more important in today's technological world as the need for industry increases with human well-being. In this study, we synthesized SnO nanoparticles (NPs) using an environmentally friendly method or green method from Croton macrostachyus leaf extract, leading to the transformation of UV absorbance to visible absorbance by reducing the band gap energy. The products underwent UV, FTIR, XRD, SEM, EDX, XPS, BET, and DLS for characterization. Characterization via UV-Vis spectroscopy confirmed the shift in absorbance towards the visible spectrum, indicating the potential for enhanced photocatalytic activity under visible light irradiation. The energy band gap for as-synthesized nanoparticles was 3.03 eV, 2.71 eV, 2.61 eV, and 2.41 eV for the 1:1, 1:2, 1:3, and 1:4 sample ratios, respectively. The average crystal size of 32.18 nm and very fine flakes with tiny agglomerate structures of nanoparticles was obtained. The photocatalytic activity of the green-synthesized SnO nanoparticles was explored under visible light irradiation for the degradation of rhodamine B (RhB) and methylene blue (MB), which were widespread fabric pollutants. It was finally confirmed that the prepared NPs were actively used for photocatalytic degradation. Our results suggest the promising application of these green-synthesized SnO NPs as efficient photocatalysts for environmental remediation with low energy consumption compared to other light-driven processes. The radical scavenging experiment proved that hydroxyl radicals (OH) are the predominant species in the reaction kinetics of both pollutant dyes under visible light degradation.
Evidence-based healthcare competence of social- and healthcare educators: A cross-sectional study
Immonen K, Tuomikoski AM, Mikkonen K, Oikarinen A, Ylimäki S, Parisod H, Mattila O and Kääriäinen M
The purpose of the study was to describe social and healthcare educators' evidence-based healthcare competence and explore the associated factors.
Anthocyanin of Black Highland Barley Alleviates HO-Induced Cardiomyocyte Injury and Myocardial Infarction via Activating the Phosphatase and Tensin Homolog/Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway
Liu Z, Shu S, Li S, Peng P, Zhang Y, Li Z and Wang W
Cardiovascular disease (CVD) represents a substantial global health challenge, with its impact on mortality and morbidity rates surpassing that of cancer. The present study was designed to explore the cardioprotective properties of anthocyanin (ACN), a compound derived from black barley, against oxidative stress-induced damage in myocardial cells and to uncover the molecular mechanisms at play. Utilizing both in vitro and in vivo experimental models, our findings indicate that ACN notably reduced cell damage caused by oxidative stress and effectively prevented apoptosis. High-throughput RNA sequencing analysis has shed light on the mechanism by which ACN achieves its antioxidative stress effects, implicating the PTEN-Akt signaling pathway. ACN was found to modulate PTEN expression levels, which in turn influences the Akt pathway, leading to a reduction in apoptotic processes. This novel insight lays the groundwork for the potential clinical utilization of ACN in the management of CVD. While this study has shed light on some of the functions of ACN, it is important to recognize that natural compounds often interact with multiple molecular targets and engage in intricate signaling cascades. Future research endeavors will concentrate on further elucidating the regulatory mechanisms by which ACN influences PTEN expression, with the goal of enhancing our comprehension and expanding the therapeutic potential of ACN in the treatment of cardiovascular conditions.
Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy
Zheng Q and Wang X
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Differential levels of circulating RNAs prior to endometrial cancer diagnosis
Rostami S, Rounge TB, Pestarino L, Lyle R, Fortner RT, Haaland ØA, Lie RT, Wiklund F, Bjørge T and Langseth H
Endometrial cancer (EC) is one of the most common female cancers and there is currently no routine screening strategy for early detection. An altered abundance of circulating microRNAs (miRNAs) and other RNA classes have the potential as early cancer biomarkers. We analyzed circulating RNA levels using small RNA sequencing, targeting RNAs in the size range of 17-47 nucleotides, in EC patients with samples collected prior to diagnosis compared to cancer-free controls. The analysis included 316 cases with samples collected 1-11 years prior to EC diagnosis, and 316 matched controls, both from the Janus Serum Bank cohort in Norway. We identified differentially abundant (DA) miRNAs, isomiRs, and small nuclear RNAs between EC cases and controls. The top EC DA miRNAs were miR-155-5p, miR-200b-3p, miR-589-5p, miR-151a-5p, miR-543, miR-485-5p, miR-625-p, and miR-671-3p. miR-200b-3p was previously reported to be among one of the top miRNAs with higher abundance in EC cases. We observed 47, 41, and 32 DA miRNAs for EC interacting with BMI, smoking status, and physical activity, respectively, including two miRNAs (miR-223-3p and miR-29b-3p) interacting with all three factors. The circulating RNAs are altered and show temporal dynamics prior to EC diagnosis. Notably, DA miRNAs for EC had the lowest q-value 4.39-6.66 years before diagnosis. Enrichment analysis of miRNAs showed that signaling pathways Fc epsilon RI, prolactin, toll-like receptor, and VEGF had the strongest associations.
Healthcare access for pregnant women in a rural developing country context: Formal and informal institutional challenges
Emile R, Krisjanous J, Banga M and Kadirov D
This study examines healthcare access for pregnant women in a rural developing country context. Drawing upon institutional theory and Levesque et al's model of access, the study finds pregnant women face challenges both of a formal and informal nature in accessing healthcare. The findings suggest the need for integrated and collaborative workings across formal and informal institutional networks. Theoretically, the study makes two contributions. First, it adds value to institutional theory by incorporating a dimension of access. Second, it builds upon Levesque et al.'s healthcare access framework by highlighting the role and significance of a third dimension-that is informal institutions, in addition to the current two-formal institutions and individual factors.
Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health
Dahiya P, Kumari S, Behl M, Kashyap A, Kumari D, Thakur K, Devi M, Kumari N, Kaushik N, Walia A, Bhatt AK and Bhatia RK
Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.
Mapping the global research landscape for laser treatment of scars: a visualization and bibliometric analysis
Zyoud SH, Taha S, Zyoud SH, Shahwan M, Jairoun AA and Al-Jabi SW
Effectiveness of eHealth interventions for HIV prevention, testing and management: An umbrella review
Shi H, Du J, Jin G, Yang H, Guo H, Yuan G, Zhu Z, Xu W, Wang S, Guo H, Jiang K, Hao J, Sun Y, Su P and Zhang Z
Human immunodeficiency virus (HIV) infection has become a major contributor to the global burden of disease. Globally, the number of cases of HIV continues to increase. Electronic health (eHealth) interventions have emerged as promising tools to support disease self-management among people living with HIV. The purpose of this umbrella review is to systematically evaluate and summarize the evidence and results of published systematic reviews and meta-analyses on the effectiveness of eHealth interventions for HIV prevention, testing and management.
Cost-effectiveness Analysis of Maternal Immunization with RSVpreF Vaccine for the Prevention of Respiratory Syncytial Virus Among Infants in Spain
Álvarez Aldean J, Rivero Calle I, Rodríguez Fernández R, Aceituno Mata S, Bellmunt A, Prades M, Law AW, López-Ibáñez de Aldecoa A, Méndez C, García Somoza ML, Soto J and Lozano V
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infections (ALRI) in children under one year of age. In high-income countries, RSV infections cause a significant overload of care every winter, imposing a significant burden to the healthcare system, which has made the development of prevention strategies a major global health priority. In this context, a new bivalent RSV prefusion F protein-based vaccine (RSVpreF) has recently been approved. The objective of this study was to evaluate the cost-effectiveness of vaccinating pregnant women with the RSVpreF vaccine to prevent RSV in infants from the Spanish National Healthcare System (NHS) perspective.
Endothelial progenitor cells for diabetic cardiac and kidney disease
Raleigh MJ, Pasricha SV, Nauth A, Ward MR and Connelly KA
The management of diabetes mellitus and its resultant end organ dysfunction represents a major challenge to global health-care systems. Diabetic cardiac and kidney disease commonly co-occur and are significant contributors to the morbidity and mortality of patients with diabetes, carrying a poor prognosis. The tight link of these parallel end organ manifestations suggests a deeper common underlying pathology. Here, we outline the mechanistic link between diabetic cardiac and kidney disease, providing evidence for the role of endothelial dysfunction in both processes and the potential for cellular therapy to correct these disorders. Specifically, we review the preclinical and clinical evidence for endothelial progenitor cell therapy in cardiac, kidney, and cardio-renal disease applications. Finally, we outline novel approaches to endothelial progenitor cell therapy through cell enhancement and the use of extracellular vesicles, discussing published and future work.
Same evidence different recommendations: a methodological assessment of transatlantic guidelines for the management of valvular heart disease
Milojevic M, Sousa-Uva M, Marin-Cuartas M, Kaul S, Nikolic A, Mandrola J, Sádaba JR and Myers PO
To identify methodological variations leading to varied recommendations between the American College of Cardiology (ACC)/American Heart Association (AHA) and the European Society of Cardiology (ESC)/European Association for Cardio-Thoracic Surgery (EACTS) valvular heart disease (VHD) Guidelines, and to suggest foundational steps towards standardizing guideline development.
Midwife-led obstetric triage to increase providers' knowledge and improve timeliness of care: A pre and posttest design
Sieka JM, Harmon-Gray WM, Dahn BT, Veliz PT and Lori JR
Research in low- and middle-income countries has shown that maternal mortality is directly related to inadequate or absent obstetric (OB) triage systems. Standard triage systems and knowledge on triaging for obstetric emergencies are often absent or lacking in most healthcare systems in Liberia.
The blood deserts of Bihar and implications for postpartum hemorrhage care
Dutta R, Pendleton AA, Shukla M, Jayaram A, Hembram S, Kumar N, Gadgil A, Roy N and Raykar NP
Fetal bisphenol and phthalate exposure and early childhood growth in a New York City birth cohort
Blaauwendraad SM, Shahin S, Duh-Leong C, Liu M, Kannan K, Kahn LG, Jaddoe VWV, Ghassabian A and Trasande L
Exposure to endocrine-disrupting chemicals such as bisphenols and phthalates during pregnancy may disrupt fetal developmental programming and influence early-life growth. We hypothesized that prenatal bisphenol and phthalate exposure was associated with alterations in adiposity through 4 years. This associations might change over time.
Environmental exposure and child health in China
Ding G, Gao Y, Kan H, Zeng Q, Yan C, Li F, Jiang F, Landrigan PJ, Tian Y and Zhang J
Chinese children are exposed to broad environmental risks ranging from well-known hazards, such as pesticides and heavy metals, to emerging threats including many new man-made chemicals. Although anecdotal evidence suggests that the exposure levels in Chinese children are substantially higher than those of children in developed countries, a systematic assessment is lacking. Further, while these exposures have been linked to a variety of childhood diseases, such as respiratory, endocrine, neurological, behavioral, and malignant disorders, the magnitude of the associations is often unclear. This review provides a current epidemiologic overview of commonly reported environmental contaminants and their potential impact on children's health in China. We found that despite a large volume of studies on various topics, there is a need for more high-quality research and better-coordinated regional and national data collection. Moreover, prevention of such diseases will depend not only on training of environmental health professionals and enhanced research programs, but also on public education, legislation, and networking.
Responses to phytoplankton community succession and expression of key functional genes in plateau lakes under 17β-estradiol interference
Huang Z, Shen J, Feng J, Yang Y, Na J and Wang X
Steroid estrogens (SEs) have garnered global attention because of their potential hazards to human health and aquatic organisms at low concentrations (ng/L). The ecosystems of plateau freshwater lakes are fragile, the water lag time is long, and pollutants easily accumulate, making them more vulnerable to the impact of SEs. However, the knowledge of the impact of SEs on the growth and decomposition of phytoplankton communities in plateau lakes and the eutrophication process is limited. This study investigated the effects and mechanisms of SEs exposure on dominant algal communities and the expression of typical algal functional genes in Erhai Lake using indoor simulations and molecular biological methods. The results showed that phytoplankton were sensitive to 17β-estradiol (E2β) pollution, with a concentration of 50, and 100 ng/L E2β exposure promoting the growth of cyanophyta and chlorophyta in the short term; this poses an ecological risk of inducing algal blooms. E2β of 1000 ng/L exposure led to cross-effects of estrogenic effects and toxicity, with most phytoplankton being inhibited. However, small filamentous cyanobacteria and diatoms exhibited greater tolerance; Melosira sp. even exhibited "low inhibition, high promotion" behavior. Exposure to E2β reduced the Shannon-Wiener diversity index (H'), Pielou index (J), and the number of dominant algal species (S) in phytoplankton communities, leading to instability in community succession. E2β of 50 ng/L enhanced the expression levels of relevant functional genes, such as ftsH, psaB, atpB, and prx, related to Microcystis aeruginosa. E2β of 50 ng/L and 5 mg/L can promote the transcription of Microcystis toxins (MC) related genes (mcyA), leading to more MC production by algal cells.
Inducing Long Lasting B cell and T cell Immunity against Multiple Variants of SARS-CoV-2 through Mutant Bacteriophage Qβ - Receptor Binding Domain Conjugate
Tan Z, Yang C, Lin PH, Ramadan S, Yang W, Rashidi Z, Lang S, Shafieichaharberoud F, Gao J, Pan X, Soloff N, Wu X, Bolin S, Pyeon D and Huang X
More than three years into the global pandemic, SARS-CoV-2 remains a significant threat to public health. Immunities acquired from infection or current vaccines fail to provide long term protection against subsequent infections, mainly due to their fast-waning nature and the emergence of variants of concerns (VOCs) such as Omicron. To overcome these limitations, SARS-CoV-2 Spike protein receptor binding domain (RBD)-based epitopes were investigated as conjugates with a powerful carrier, the mutant bacteriophage Qβ (mQβ). The epitope design was critical to eliciting potent antibody responses with the full length RBD being superior to peptide and glycopeptide antigens. The full length RBD conjugated with mQβ activated both humoral and cellular immune systems in vivo, inducing broad spectrum, persistent and comprehensive immune responses effective against multiple VOCs including Delta and Omicron variants, rendering it a promising vaccine candidate. This article is protected by copyright. All rights reserved.
Comparison of the Efficacy of Clascoterone, Trifarotene, and Tazarotene for the Treatment of Acne: A Systematic Literature Review and Meta-Analysis
Shergill M, Ali MU and Abu-Hilal M
Acne vulgaris, a chronic inflammatory condition, is associated with significant physical and psychosocial burden. Since 2019, three new topical agents for acne vulgaris have been approved in the USA and Canada. We performed a systematic review and meta-analysis to compare the efficacy between twice-daily clascoterone cream 1%, once-daily trifarotene 0.005% cream, and once-daily tazarotene 0.045% lotion for acne treatment.
Considerations for cultivated crustacean meat: potential cell sources, potential differentiation and immortalization strategies, and lessons from crustacean and other animal models
Musgrove L, Russell FD and Ventura T
Cultivated crustacean meat (CCM) is a means to create highly valued shrimp, lobster, and crab products directly from stem cells, thus removing the need to farm or fish live animals. Conventional crustacean enterprises face increasing pressures in managing overfishing, pollution, and the warming climate, so CCM may provide a way to ensure sufficient supply as global demand for these products grows. To support the development of CCM, this review briefly details crustacean cell culture work to date, before addressing what is presently known about crustacean muscle development, particularly the molecular mechanisms involved, and how this might relate to recent work on cultivated meat production in vertebrate species. Recognizing the current lack of cell lines available to establish CCM cultures, we also consider primary stem cell sources that can be obtained non-lethally including tissues from limbs which are readily released and regrown, and putative stem cells in circulating hemolymph. Molecular approaches to inducing myogenic differentiation and immortalization of putative stem cells are also reviewed. Finally, we assess the current status of tools available to CCM researchers, particularly antibodies, and propose avenues to address existing shortfalls in order to see the field progress.
Health insurance coverage and experiences of intimate partner violence and postpartum abuse screening among rural US residents who gave birth 2016-2020
Kozhimannil KB, Sheffield EC, Fritz AH, Interrante JD, Henning-Smith C and Lewis VA
Intimate partner violence (IPV) is elevated among rural residents and contributes to maternal morbidity and mortality. Postpartum health insurance expansion efforts could address multiple causes of maternal morbidity and mortality, including IPV. The objective of this study was to describe the relationship between perinatal health insurance, IPV, and postpartum abuse screening among rural US residents.
Loss of Cholinergic and Monoaminergic Afferents in Transgenic Mouse Model of Cerebral Amyloidosis Preferentially Occurs Near Amyloid Plaques
Lee MK and Chen G
Alzheimer's disease (AD) is characterized by a loss of neurons in the cortex and subcortical regions. Previously, we showed that the progressive degeneration of subcortical monoaminergic (MAergic) neurons seen in human AD is recapitulated in the (APP/PS) transgenic mouse model. Because degeneration of cholinergic (Ach) neurons is also a prominent feature of AD, we examined the integrity of the Ach system in the APP/PS model. The overall density of Ach fibers is reduced in APP/PS1 mice at 12 and 18 months of age but not at 4 months of age. Analysis of basal forebrain Ach neurons shows no loss of Ach neurons in the APP/PS model. Thus, since MAergic systems show overt cell loss at 18 months of age, the Ach system is less vulnerable to neurodegeneration in the APP/PS1 model. We also examined whether the proximity to Aβ deposition affected the degeneration of Ach and 5-HT afferents. We found that the areas closer to the edges of compact Aβ deposits exhibit a more severe loss of afferents than the areas that are more distal to Aβ deposits. Collectively, the results indicate that the APP/PS model recapitulates the degeneration of multiple subcortical neurotransmitter systems, including the Ach system. In addition, the results indicate that Aβ deposits cause global as well as local toxicity to subcortical afferents.
An Analysis of Global Surgery Opportunities in American Otolaryngology Residency Programs
Cox ML, Allen DZ, Rodriguez MM, Green JC and Kain JJ
To depict the current state of global surgery opportunities in United States ACGME-approved Otolaryngology residency programs and compare the characteristics of programs with and without these opportunities.
Timing of Cardio-Kidney Protection With SGLT2 Inhibitors: Insights From Four Large-Scale Placebo-Controlled Outcome Trials
Neuen BL, Claggett BL, Perkovic V, Jardine M, Heerspink HJL, Mahaffey KW, McMurray JJV, Solomon SD and Vaduganathan M
Decolonising research and folk media: a methodology for Exploring narratives of HIV and AIDS in rural Malawi
Abdulla S
In Malawi, well-meaning HIV and AIDS interventions imagined in the "Global North" continue to ignore how local people construct the world. This paper explores how folk media can be used to enable research on HIV and AIDS to be positioned within localised cultural paradigms.
Local gun violence, mental health, and sleep: A neighborhood analysis in one hundred US Cities
Semenza DC, Silver IA, Stansfield R and Bamwine P
Community gun violence significantly shapes public health and collective well-being. Understanding how gun violence is associated with community health outcomes like mental health and sleep is crucial for developing interventions to mitigate disparities exacerbated by violence exposure.
Yogurt Alleviates Cyclophosphamide-Induced Immunosuppression in Mice through D-Lactate
Du X, Yan Y, Dai Y and Xu R
Numerous studies have investigated the immunomodulatory effects of yogurt, but the underlying mechanism remained elusive. This study aimed to elucidate the alleviating properties of yogurt on immunosuppression and proposed the underlying mechanism was related to the metabolite D-lactate. In the healthy mice, we validated the safety of daily yogurt consumption (600 μL) or D-lactate (300 mg/kg). In immunosuppressed mice induced by cyclophosphamide (CTX), we evaluated the immune regulation of yogurt and D-lactate. The result showed that yogurt restored body weight, boosted immune organ index, repaired splenic tissue, recovered the severity of delayed-type hypersensitivity reactions and increased serum cytokines (IgA, IgG, IL-6, IFN-γ). Additionally, yogurt enhanced intestinal immune function by restoring the intestinal barrier and upregulating the abundance of Bifidobacterium and Lactobacillus. Further studies showed that D-lactate alleviated immunosuppression in mice mainly by promoting cellular immunity. D-lactate recovered body weight and organ development, elevated serum cytokines (IgA, IgG, IL-6, IFN-γ), enhanced splenic lymphocyte proliferation and increased the mRNA level of T-bet in splenic lymphocyte to bolster Th1 differentiation. Finally, CTX is a chemotherapeutic drug, thus, the application of yogurt and D-lactate in the tumor-bearing mouse model was initially explored. The results showed that both yogurt (600 μL) and D-lactate (300 mg/kg) reduced cyclophosphamide-induced immunosuppression without promoting tumor growth. Overall, this study evaluated the safety, immune efficacy and applicability of yogurt and D-lactate in regulating immunosuppression. It emphasized the potential of yogurt as a functional food for immune regulation, with D-lactate playing a crucial role in its immunomodulatory effects.
Enhancing Therapeutic Efficacy and Safety of Immune Checkpoint Inhibition for Bladder Cancer: A Comparative Analysis of Injectable vs. Intravesical Administration
Tyagi P, Hafron J, Kaufman J and Chancellor M
Bladder cancer (BC) presents a significant global health burden, characterized by high recurrence rates post-initial treatment. Gender differences in BC prevalence and response to therapy emphasize the importance of personalized treatment strategies. While Bacillus Calmette-Guérin (BCG) remains a cornerstone of BC therapy, resistance poses a challenge, necessitating alternative strategies. Immune checkpoint inhibitors (ICIs) have shown promise, yet systemic toxicity raises concern. Intravesical administration of ICIs offers a potential solution, with recent studies demonstrating the feasibility and efficacy of intravesical pembrolizumab. Although systemic toxicity remains a concern, its localized administration may mitigate adverse events. Additionally, liposomal delivery of ICIs exhibits promises in enhancing drug penetration and reducing toxicity. Novel imaging modalities compatible with Vesical Imaging-Reporting and Data System (VI-RADS) and capable of predicting high-grade bladder cancer can aid the pre-operative shared decision making of patient and surgeon. Future research should focus on refining treatment approaches, optimizing dosing regimens, and leveraging advanced imaging techniques to improve patient outcomes. In conclusion, intravesical immunotherapy presents a promising avenue for BC treatment, offering enhanced therapeutic effectiveness while minimizing systemic toxicity. Continued research efforts are essential to validate these findings and optimize intravesical immunotherapy's role in BC management, ultimately improving patient outcomes.
The role of the major chemosensory organs in the host-seeking activity of Anopheles coluzzii (Diptera: Culicidae)
Popkin-Hall ZR and Slotman MA
Anopheles coluzzii (Coetzee & Wilkerson) and its sibling species Anopheles gambiae s.s. (Giles) are highly anthropophilic and among the major malaria vectors in sub-Saharan Africa. Mosquitoes use various senses to find hosts, but rely primarily on olfaction. Therefore, the mosquito olfactory system has been studied extensively, including a variety of studies comparing chemosensory gene expression between An. coluzzii and its zoophilic sibling species Anopheles quadriannulatus (Theobald). These studies revealed species-specific chemosensory gene expression in the antennae and maxillary palps, which raised the question of a potential role for the palps in determining species-specific host preferences. To answer this question, we mechanically ablated the antennae, maxillary palps, and labella, and ran both control and ablated mosquitoes through a dual-port olfactometer. While we aimed to identify the organs responsible for vertebrate host choice, the ablated mosquitoes exclusively responded to human odor, so we were unable to do so. However, we were able to refine our understanding of the roles of these organs in host-seeking activation (leaving the release cage) as well as odor response (entering an odor port). As expected, the antennae are the most important organs to both behaviors: activation was roughly halved and vertebrate odor response was abolished in antennae-ablated mosquitoes. Maxillary palp ablation had little impact on activation, but reduced odor response to a similar degree as the exclusion of CO2. Finally, while labellar ablation dramatically reduced activation (probably associated with the inability to feed), it had little impact on odor response, suggesting that any labellar role in host choice is likely not olfactory.
The Application of Fluorescence In Situ Hybridization in the Prescreening of Hybrids
Park HW, Sevilleno SS, Ha MKTT, Cabahug-Braza RA, Yi JH, Lim KB, Cho W and Hwang YJ
Fluorescence in situ hybridization (FISH), a molecular cytogenetic technique that enables the visualization and identification of specific DNA sequences within chromosomes, has emerged as a pivotal tool in plant breeding programs, particularly in the case of species. , a genus with a complex reproductive system, often poses challenges in accurately identifying hybrids because of its tendency to hybridize, which leads to intricate genetic variation. This study focused on the use of FISH as a prescreening method to identify true hybrids in breeding programs. FISH analysis was first performed on the parents to identify their 45S and 5S rDNA signals, along with their respective chromosome numbers. The signals were then compared with those of the twenty progenies with reference to their supposed parents. Five true hybrids, seven self-pollinated progenies, and eight false hybrids were identified through FISH. The findings highlight the significance of FISH as a screening method that contributes significantly to the efficiency of breeding programs by ensuring the preservation of desired genetic traits and minimizing the inadvertent inclusion of misidentified hybrids. To conclude, this study underscores the vital role of FISH in enhancing the precision and success of breeding programs and opens new avenues for improved breeding strategies and crop development.
Artificial Intelligence in Cutaneous Leishmaniasis Diagnosis: Current Developments and Future Perspectives
Talimi H, Retmi K, Fissoune R and Lemrani M
Cutaneous Leishmaniasis (CL) is a major global health problem requiring appropriate diagnosis methods. Its diagnosis is challenging, particularly in resource-limited settings. The integration of Artificial Intelligence (AI) into medical diagnostics has shown promising results in various fields, including dermatology. In this systematic review, we aim to highlight the value of using AI for CL diagnosis and the AI-based algorithms that are employed in this process, and to identify gaps that need to be addressed. Our work highlights that only a limited number of studies are related to using AI algorithms for CL diagnosis. Among these studies, seven gaps were identified for future research. Addressing these considerations will pave the way for the development of robust AI systems and encourage more research in CL detection by AI. This could contribute to improving CL diagnosis and, ultimately, healthcare outcomes in CL-endemic regions.
Assessment of Anti-Prostate Cancer Activity among Four Seaweeds, with Focus on J.Agardh
Wu GJ and Hsiao PW
In response to a global shift towards health-conscious and environmentally sustainable food choices, seaweed has emerged as a focus for researchers due to its large-scale cultivation potential and the development of bioactive substances. This research explores the potential anticancer properties of seaweed extracts, focusing on analyzing the impact of four common edible seaweeds in Taiwan on prostate cancer (PCa) cells' activity. The study used bioassay-guided fractionation to extract Cl80 from various seaweeds with androgen receptor (AR)-inhibitory activity. Cl80 demonstrated effective suppression of 5α-dihydrotestosterone (DHT)-induced AR activity in 103E cells and attenuated the growth and prostate-specific antigen (PSA) protein expression in LNCaP and 22Rv1 cells. Additionally, Cl80 exhibited differential effects on various PCa cell lines. Concentrations above 5 μg/mL significantly inhibited LNCaP cell proliferation, while 22Rv1 cells were more resistant to Cl80. PC-3 cell proliferation was inhibited at 5 μg/mL but not completely at 50 μg/mL. A clonogenic assay showed that at a concentration of 0.5 μg/mL, the colony formation in LNCaP and PC-3 cells was significantly reduced, with a dose-dependent effect. Cl80 induced apoptosis in all PCa cell types, especially in LNCaP cells, with increased apoptotic cells observed at higher concentrations. Cl80 also decreased the mitochondrial membrane potential (ΔΨm) in a dose-dependent manner in all PCa cell lines. Furthermore, Cl80 suppressed the migration ability of PCa cells, with significant reductions observed in LNCaP, 22Rv1, and PC-3 cells at various concentrations. These compelling findings highlight the promising therapeutic potential of J.Agardh and its isolated compound Cl80 in the treatment of PCa.
Ecological implications and drivers of emerging contaminants in Dongting Lake of Yangtze River Basin, China: A multi-substance risk analysis
Luo Y, Jin X, Zhao J, Xie H, Guo X, Huang D, Giesy JP and Xu J
Emerging contaminants (ECs) are increasingly recognized as a global threat to biodiversity and ecosystem health. However, the cumulative risks posed by ECs to aquatic organisms and ecosystems, as well as the influence of anthropogenic activities and natural factors on these risks, remain poorly understood. This study assessed the mixed risks of ECs in Dongting Lake, a Ramsar Convention-classified Typically Changing Wetland, to elucidate the major EC classes, key risk drivers, and magnitude of anthropogenic and natural impacts. Results revealed that ECs pose non-negligible acute (30% probability) and chronic (70% probability) mixed risks to aquatic organisms in the freshwater lake ecosystem, with imidacloprid identified as the primary pollutant stressor. Redundancy analysis (RDA) and structural equation modeling (SEM) indicated that cropland and precipitation were major drivers of EC contamination levels and ecological risk. Cropland was positively associated with EC concentrations, while precipitation exhibited a dilution effect. These findings provide critical insights into the ecological risk status and key risk drivers in a typical freshwater lake ecosystem, offering data-driven support for the control and management of ECs in China.
Estimation of the Impact of Abdominal Adipose Tissue (Subcutaneous and Visceral) on the Occurrence of Carbohydrate and Lipid Metabolism Disorders in Patients with Obesity-A Pilot Study
Witczak-Sawczuk K, Ostrowska L, Cwalina U, Leszczyńska J, Jastrzębska-Mierzyńska M and Hładuński MK
Obesity represents a significant global public health concern. The excessive accumulation of abdominal adipose tissue is often implicated in the development of metabolic complications associated with obesity. Our study aimed to investigate the impact of particular deposits of abdominal adipose tissue on the occurrence of carbohydrate and lipid metabolism complications. We established cut-off points for visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and the VAT/SAT ratio at which selected metabolic complications of obesity-related diseases (disorders of carbohydrate and/or lipid metabolism) occur. We conducted an observational study involving 91 subjects with first- and second-degree obesity, accounting for gender differences. Anthropometric measurements were taken, body composition analysis (BIA) was conducted, and biochemical determinations were made. Our findings suggest that commonly used parameters for assessing early metabolic risk, such as BMI or waist circumference, may overlook the significant factor of body fat distribution, as well as gender differences. Both visceral and subcutaneous adipose tissue were found to be important in estimating metabolic risk. We identified the cut-off points in women in terms of their elevated fasting glucose levels and the presence of insulin resistance (HOMA-IR: homeostasis model assessment of insulin resistance) based on SAT, VAT, and the VAT/SAT ratio. In men, cut-off points were determined for the presence of insulin resistance (HOMA-IR) based on VAT and the VAT/SAT ratio. However, the results regarding lipid disorders were inconclusive, necessitating further investigation of a larger population.
Neonatal Vitamin D and Associations with Longitudinal Changes of Eczema up to 25 Years of Age
Zeng R, Lodge CJ, Koplin JJ, Lopez DJ, Erbas B, Abramson MJ, Eyles D, Ponsonby AL, Wjst M, Allen K, Dharmage SC and Lowe AJ
Early-life vitamin D is a potentially modifiable risk factor for the development of eczema, but there is a lack of data on longitudinal associations.
Cardiovascular Disease Burden Attributable to High Sodium Intake in China: A Longitudinal Study from 1990 to 2019
Jiang L, Shen W, Wang A, Fang H, Wang Q, Li H, Liu S, Shen Y and Liu A
Overconsumption of sodium has been identified as a key driving factor for diet-related cardiovascular diseases (CVDs). China, being a country bearing a hefty burden of CVD, has a large population with diverse cultural traditions and ethnic beliefs, which complicates the patterns of dietary sodium intake, necessitating a systematic investigation into the profile of the high sodium intake (HSI)-related burden of CVD within its subregions. This study aims to estimate the evolving patterns of HSI-induced CVD burden across China from 1990 to 2019.
Expanding Fortification with Folic Acid: Thinking Outside the Cereal-Grain Box
Tsang BL, Stadnik C, Duong M, Pachón H and Martinez H
(1) Background: Fortifying maize and wheat flours with folic acid has effectively reduced neural tube defect-affected births. However, maize and wheat flours may not be widely consumed in all countries; further reduction in neural tube defect-affected births could benefit from the identification of alternative food vehicles. We aimed to use dietary intake or apparent consumption data to determine alternative food vehicles for large-scale fortification with folic acid in low-income and lower-middle-income countries (LILMICs) and identify current research related to examining the technological feasibility of fortifying alternative foods with folic acid. (2) Methods: We identified 81 LILMICs, defined by the World Bank's (WB) 2018 income classifications. To identify dietary intake or apparent consumption, we reviewed WB's Microdata Library and Global Health Data Exchange for national surveys from 1997-2018. We reviewed survey reports for dietary intake or apparent consumption data and analyzed survey datasets for population coverage of foods. We defined alternative food vehicles as those that may cover/be consumed by ≥30% of the population or households; cereal grains (maize and wheat flours and rice) were included as an alternative food vehicle if a country did not have existing mandatory fortification legislation. To identify current research on fortification with folic acid in foods other than cereal grains, we conducted a systematic review of published literature and unpublished theses, and screened for foods or food products. (3) Results: We extracted or analyzed data from 18 national surveys and countries. The alternative foods most represented in the surveys were oil ( = 16), sugar ( = 16), and salt ( = 14). The coverage of oil ranged from 33.2 to 95.7%, sugar from 32.2 to 98.4%, and salt from 49.8 to 99.9%. We found 34 eligible studies describing research on alternative foods. The most studied alternative foods for fortification with folic acid were dairy products ( = 10), salt ( = 6), and various fruit juices ( = 5). (4) Conclusions: Because of their high coverage, oil, sugar, and salt emerge as potential alternative foods for large-scale fortification with folic acid. However, except for salt, there are limited or no studies examining the technological feasibility of fortifying these foods with folic acid.
Differences in the Course, Diagnosis, and Treatment of Food Allergies Depending on Age-Comparison of Children and Adults
Kuźniar J, Kozubek P and Gomułka K
Food allergy (FA) has become a common global public health issue, with a growing prevalence in the modern world and a significant impact on the lives of patients, their families, and caregivers. It affects every area of life and is associated with elevated costs. Food allergy is an adverse immune reaction that occurs in response to a given food. The symptoms vary from mild to severe and can lead to anaphylaxis. This is why it is important to focus on the factors influencing the occurrence of food allergies, specific diagnostic methods, effective therapies, and especially prevention. Recently, many guidelines have emphasized the impact of introducing specific foods into a child's diet at an early age in order to prevent food allergies. Childhood allergies vary with age. In infants, the most common allergy is to cow's milk. Later in life, peanut allergy is more frequently diagnosed. Numerous common childhood allergies can be outgrown by adulthood. Adults can also develop new IgE-mediated FA. The gold standard for diagnosis is the oral provocation test. Skin prick tests, specific IgE measurements, and component-resolved diagnostic techniques are helpful in the diagnosis. Multiple different approaches are being tried as possible treatments, such as immunotherapy or monoclonal antibodies. This article focuses on the prevention and quality of life of allergic patients. This article aims to systematize the latest knowledge and highlight the differences between food allergies in pediatric and adult populations.
Standard Nutritional Assessment Tools Are Unable to Predict Loss of Muscle Mass in Patients Due to Undergo Pancreatico-Duodenectomy: Highlighting the Need for Detailed Nutritional Assessment
Phillips ME, Robertson MD, Bennett-Eastley K, Rowe L, Frampton AE and Hart KH
Pancreatico-duodenectomy (PD) carries significant morbidity and mortality, with very few modifiable risk factors. Radiological evidence of sarcopenia is associated with poor outcomes. This retrospective study aimed to analyse the relationship between easy-to-use bedside nutritional assessment techniques and radiological markers of muscle loss to identify those patients most likely to benefit from prehabilitation.
RAF and MEK Inhibitors in Non-Small Cell Lung Cancer
Adamopoulos C, Papavassiliou KA, Poulikakos PI and Papavassiliou AG
Lung cancer, despite recent advancements in survival rates, represents a significant global health burden. Non-small cell lung cancer (NSCLC), the most prevalent type, is driven largely by activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) and receptor tyrosine kinases (RTKs), and less in v-RAF murine sarcoma viral oncogene homolog B (BRAF) and mitogen-activated protein-kinase kinase (MEK), all key components of the RTK-RAS-mitogen-activated protein kinase (MAPK) pathway. Learning from melanoma, the identification of substitution in NSCLC provided the rationale for the investigation of RAF and MEK inhibition as a therapeutic strategy. The regulatory approval of two RAF-MEK inhibitor combinations, dabrafenib-trametinib, in 2017, and encorafenib-binimetinib, in 2023, signifies a breakthrough for the management of BRAFV600E-mutant NSCLC patients. However, the almost universal emergence of acquired resistance limits their clinical benefit. New RAF and MEK inhibitors, with distinct biochemical characteristics, are in preclinical and clinical development. In this review, we aim to provide valuable insights into the current state of RAF and MEK inhibition in the management of NSCLC, fostering a deeper understanding of the potential impact on patient outcomes.
Examination of the Complex Molecular Landscape in Obesity and Type 2 Diabetes
Vadadokhau U, Varga I, Káplár M, Emri M and Csősz É
The escalating prevalence of metabolic disorders, notably type 2 diabetes (T2D) and obesity, presents a critical global health challenge, necessitating deeper insights into their molecular underpinnings. Our study integrates proteomics and metabolomics analyses to delineate the complex molecular landscapes associated with T2D and obesity. Leveraging data from 130 subjects, including individuals with T2D and obesity as well as healthy controls, we elucidate distinct molecular signatures and identify novel biomarkers indicative of disease progression. Our comprehensive characterization of cardiometabolic proteins and serum metabolites unveils intricate networks of biomolecular interactions and highlights differential protein expression patterns between T2D and obesity cohorts. Pathway enrichment analyses reveal unique mechanisms underlying disease development and progression, while correlation analyses elucidate the interplay between proteomics, metabolomics, and clinical parameters. Furthermore, network analyses underscore the interconnectedness of cardiometabolic proteins and provide insights into their roles in disease pathogenesis. Our findings may help to refine diagnostic strategies and inform the development of personalized interventions, heralding a new era in precision medicine and healthcare innovation. Through the integration of multi-omics approaches and advanced analytics, our study offers a crucial framework for deciphering the intricate molecular underpinnings of metabolic disorders and paving the way for transformative therapeutic strategies.
Anemia in Breastfeeding Women and Its Impact on Offspring's Health in Indonesia: A Narrative Review
Basrowi RW, Zulfiqqar A and Sitorus NL
Anemia in breastfeeding women is a neglected global health issue with significant implications for maternal and child health. Despite its widespread occurrence and adverse effects, this problem remains largely unknown and overlooked on the global health agenda. Despite efforts to improve health access coverage and provide iron and folic acid supplementation, anemia persists. This underscores the need for a comprehensive approach to address the problem. Urgent action must be taken to prioritize education and awareness campaigns, ensure access to nutritious food, and enhance healthcare services. Education programs should focus on promoting iron-rich diets, dispelling cultural myths, and providing practical guidance. Improving healthcare services requires increasing availability, ensuring a consistent supply of iron supplements, and providing adequate training for healthcare providers. A successful implementation relies on a strong collaboration between the government, healthcare providers, and community. It is crucial that we acknowledge that high coverage alone is insufficient for solving the issue, emphasizing the importance of targeted interventions and a strategic implementation. By adopting a comprehensive approach and addressing the underlying causes of anemia, Indonesia can make significant progress in reducing its prevalence and improving the overall health of its population, particularly among breastfeeding women.
Novel Variants Linked to the Prodromal Stage of Parkinson's Disease (PD) Patients
Badawy MT, Salama AA and Salama M
The symptoms of most neurodegenerative diseases, including Parkinson's disease (PD), usually do not occur until substantial neuronal loss occurs. This makes the process of early diagnosis very challenging. Hence, this research used variant call format (VCF) analysis to detect variants and novel genes that could be used as prognostic indicators in the early diagnosis of prodromal PD.
Benefits of Puerarin on Metabolic Syndrome and Its Associated Cardiovascular Diseases in Rats Fed a High-Fat/High-Sucrose Diet
Mu Y, Yang Y, Jiang S, Liu C, Han Y, Jiang J and Wang Y
Metabolic syndrome (MetS) is a cluster of risk factors for cardiovascular diseases (CVDs) that has become a global public health problem. Puerarin (PUE), the principal active compound of Pueraria lobata, has the effects of regulating glucose and lipid metabolism and protecting against cardiovascular damage. This study aimed to investigate whether dietary supplementation with PUE could ameliorate MetS and its associated cardiovascular damage. Rats were randomly divided into three groups: the normal diet group (NC), the high-fat/high-sucrose diet group (HFHS), and the HFHS plus PUE diet group (HFHS-PUE). The results showed that PUE-supplemented rats exhibited enhanced glucose tolerance, improved lipid parameters, and reduced blood pressure compared to those on the HFHS diet alone. Additionally, PUE reversed the HFHS-induced elevations in the atherogenic index (AI) and the activities of serum lactate dehydrogenase (LDH) and creatine kinase (CK). Ultrasonic evaluations indicated that PUE significantly ameliorated cardiac dysfunction and arterial stiffness. Histopathological assessments further confirmed that PUE significantly mitigated cardiac remodeling, arterial remodeling, and neuronal damage in the brain. Moreover, PUE lowered systemic inflammatory indices including C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and systemic immune-inflammation index (SII). In conclusion, dietary supplementation with PUE effectively moderated metabolic disorders, attenuated systemic inflammation, and minimized cardiovascular damage in rats with MetS induced by an HFHS diet. These results provide novel insights into the potential benefits of dietary PUE supplementation for the prevention and management of MetS and its related CVDs.
Global and regional prevalence of polypharmacy and related factors, 1997-2022: An umbrella review
Kim S, Lee H, Park J, Kang J, Rahmati M, Rhee SY and Yon DK
Limited comprehensive evidence exists on the global prevalence of polypharmacy. This knowledge gap contributes to increased healthcare system costs and related public health concerns. Thus, we aimed to synthesize the current evidence on polypharmacy prevalence and associated factors in the general and older populations using an umbrella review.
Spatial Barriers to Transforming toward a Healthy Food System in the Noreste of Mexico
Roggema R, Krstikj A and Flores B
In the past five decades, global food systems have undergone a notable transition, moving from predominantly rural settings to increasingly urban and industrialized environments, largely driven by processes of globalization and supply chain integration. However, this evolution has not adequately addressed equitable access to nutritious diets and food environments, resulting in adverse health outcomes. This study delves into the spatial and non-spatial barriers that impede the adoption of healthy diets in the Noreste of Mexico, particularly focusing on the challenges associated with accessing and cultivating plant-based foods. Through an examination of suitable areas for urban agriculture and an exploration of the socio-cultural factors influencing the adoption of plant-based diets, the research focuses on interventions aimed at promoting healthier and more sustainable eating practices in Monterrey. The findings of the study reveal significant disparities in food access across the Monterrey metropolitan area, with central urban zones exhibiting superior access to fresh foods compared to suburban and peripheral regions. This inequality disproportionately affects marginalized areas characterized by higher poverty rates, exacerbating issues of food insecurity. Nevertheless, traditional dietary practices could offer promising avenues for creating culturally significant and healthier dietary transitions, even amidst the ongoing process of urbanization.
Nutritional Prognosis of Patients Submitted to Radiotherapy and Its Implications in Treatment
Irigaray MMM, Santana LF, Pott A, do Nascimento VA, de Cássia Avellaneda Guimarães R, de Souza AS and de Cássia Freitas K
Oncological patients show intense catabolic activity, as well as a susceptibility to higher nutritional risk and clinical complications. Thus, tools are used for monitoring prognosis. Our objective was to analyze the nutrition prognosis of patients who underwent radiotherapy, correlating it with outcomes and complications. We performed a retrospective transversal study based on secondary data from hospital records of patients who started radiotherapy between July 2022 and July 2023. We established Prognostic Scores through a combination of Prognostic Nutritional Index (PNI) and a Subjective Global Assessment (SGA), assessed at the beginning and end of treatment. Score 3 patients, with PNI ≤ 45.56 and an SGA outcome of malnutrition, initially presented a higher occurrence of odynophagia, later also being indicative of reduced diet volume, treatment interruption, and dysphagia. SGA alone showed sensitivity to altered diet volume, dysphagia, and xerostomia in the second assessment. Besides this, PNI ≤ 45.56 also indicated the use of alternative feeding routes, treatment interruption, and hospital discharge with more complications. We conclude that the scores could be used to indicate complications; however, further studies on combined biomarkers are necessary.
Forgotten Gems: Exploring the Untapped Benefits of Underutilized Legumes in Agriculture, Nutrition, and Environmental Sustainability
Odeku OA, Ogunniyi QA, Ogbole OO and Fettke J
In an era dominated by conventional agricultural practices, underutilized legumes termed "Forgotten Gems" represent a reservoir of untapped benefits with the unique opportunity to diversify agricultural landscapes and enhance global food systems. Underutilized crops are resistant to abiotic environmental conditions such as drought and adapt better to harsh soil and climatic conditions. Underutilized legumes are high in protein and secondary metabolites, highlighting their role in providing critical nutrients and correcting nutritional inadequacies. Their ability to increase dietary variety and food security emerges as a critical component of their importance. Compared to mainstream crops, underutilized legumes have been shown to reduce the environmental impact of climate change. Their capacity for nitrogen fixation and positive impact on soil health make them sustainable contributors to biodiversity conservation and environmental balance. This paper identifies challenges and proposes strategic solutions, showcasing the transformative impact of underutilized legumes on agriculture, nutrition, and sustainability. These "Forgotten Gems" should be recognized, integrated into mainstream agricultural practices, and celebrated for their potential to revolutionize global food production while promoting environmental sustainability.
Integrated Analysis of Genomic and Genome-Wide Association Studies Identified Candidate Genes for Nutrigenetic Studies in Flavonoids and Vascular Health: Path to Precision Nutrition for (Poly)phenols
Ruskovska T, Postolov F and Milenkovic D
Flavonoids exert vasculoprotective effects in humans, but interindividual variability in their action has also been reported. This study aims to identify genes that are associated with vascular health effects of flavonoids and whose polymorphisms could explain interindividual variability in response to their intake. Applying the predetermined literature search criteria, we identified five human intervention studies reporting positive effects of flavonoids on vascular function together with global genomic changes analyzed using microarray methods. Genes involved in vascular dysfunction were identified from genome-wide association studies (GWAS). By extracting data from the eligible human intervention studies, we obtained 5807 differentially expressed genes (DEGs). The number of identified upstream regulators (URs) varied across the studies, from 227 to 1407. The search of the GWAS Catalog revealed 493 genes associated with vascular dysfunction. An integrative analysis of transcriptomic data with GWAS genes identified 106 and 42 , while subsequent functional analyses and a search of the literature identified 20 top priority candidate genes: , , , , , , , , , , , , , , , , , , , and . In conclusion, this integrated analysis identifies important genes to design future nutrigenetic studies for development of precision nutrition for polyphenols.
Inferior Frontal Sulcal Hyperintensities on Brain MRI Are Associated with Amyloid Positivity beyond Age-Results from the Multicentre Observational DELCODE Study
Dörner M, Seebach K, Heneka MT, Menze I, von Känel R, Euler S, Schreiber F, Arndt P, Neumann K, Hildebrand A, John AC, Tyndall A, Kirchebner J, Tacik P, Jansen R, Grimm A, Henneicke S, Perosa V, Meuth SG, Peters O, Hellmann-Regen J, Preis L, Priller J, Spruth EJ, Schneider A, Fliessbach K, Wiltfang J, Jessen F, Rostamzadeh A, Glanz W, Schulze JB, Schiebler SLF, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Laske C, Munk MH, Spottke A, Roy-Kluth N, Wagner M, Frommann I, Lüsebrink F, Dechent P, Hetzer S, Scheffler K, Kleineidam L, Stark M, Schmid M, Ersözlü E, Brosseron F, Ewers M, Schott BH, Düzel E, Ziegler G, Mattern H, Schreiber S and Bernal J
Inferior frontal sulcal hyperintensities (IFSHs) on fluid-attenuated inversion recovery (FLAIR) sequences have been proposed to be indicative of glymphatic dysfunction. Replication studies in large and diverse samples are nonetheless needed to confirm them as an imaging biomarker. We investigated whether IFSHs were tied to Alzheimer's disease (AD) pathology and cognitive performance. We used data from 361 participants along the AD continuum, who were enrolled in the multicentre DELCODE study. The IFSHs were rated visually based on FLAIR magnetic resonance imaging. We performed ordinal regression to examine the relationship between the IFSHs and cerebrospinal fluid-derived amyloid positivity and tau positivity (Aβ42/40 ratio ≤ 0.08; pTau181 ≥ 73.65 pg/mL) and linear regression to examine the relationship between cognitive performance (i.e., Mini-Mental State Examination and global cognitive and domain-specific performance) and the IFSHs. We controlled the models for age, sex, years of education, and history of hypertension. The IFSH scores were higher in those participants with amyloid positivity (OR: 1.95, 95% CI: 1.05-3.59) but not tau positivity (OR: 1.12, 95% CI: 0.57-2.18). The IFSH scores were higher in older participants (OR: 1.05, 95% CI: 1.00-1.10) and lower in males compared to females (OR: 0.44, 95% CI: 0.26-0.76). We did not find sufficient evidence linking the IFSH scores with cognitive performance after correcting for demographics and AD biomarker positivity. IFSHs may reflect the aberrant accumulation of amyloid β beyond age.
Effect of Heat-Treated nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study
Hong GH, Lee SY, Kim IA, Suk J, Baeg C, Kim JY, Lee S, Kim KJ, Kim KT, Kim MG and Park KY
Heat-treated nF1 (HT-nF1) increases immune cell activation and the production of various immunomodulators (e.g., interleukin (IL)-12) as well as immunoglobulin (Ig) G, which plays an important role in humoral immunity, and IgA, which activates mucosal immunity. To determine the effect of HT-nF1 intake on improving immune function, a randomized, double-blind, placebo-controlled study was conducted on 100 subjects with normal white blood cell counts. The HT-nF1 group was administered capsules containing 5 × 10 cells of HT-nF1 once a day for 8 weeks. After 8 weeks of HT-nF1 intake, significant changes in IL-12 were observed in the HT-nF1 group ( = 0.045). In particular, the change in natural killer (NK) cell activity significantly increased in subjects with low secretory (s) IgA (≤49.61 μg/mL) and low NK activity (E:T = 10:1) (≤3.59%). These results suggest that HT-nF1 has no safety issues and improves the innate immune function by regulating T helper (Th)1-related immune factors. Therefore, we confirmed that HT-nF1 not only has a positive effect on regulating the body's immunity, but it is also a safe material for the human body, which confirms its potential as a functional health food ingredient.
Gaps in the prevention of mother-to-child transmission of syphilis: a review of reported cases, South Africa, January 2020-June 2022
de Voux A, Maruma W, Morifi M, Maduma M, Ebonwu J, Sheikh K, Dlamini-Nqeketo S and Kufa T
Congenital syphilis (CS) is preventable through timely antenatal care (ANC), syphilis screening and treatment among pregnant women. Robust CS surveillance can identify gaps in this prevention cascade. We reviewed CS cases reported to the South African notifiable medical conditions surveillance system (NMCSS) from January 2020 to June 2022.
[Drug research and development and unmet needs for advanced-stage hepatocellular carcinoma]
Zhou HB and Hu HP
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and is a global health challenge. Radical surgical resection is the most effective method to achieve long-term survival for HCC. Regrettably, the vast majority of HCC patients lose the opportunity for radical resection at the time of diagnosis due to advanced tumors or poor liver reserve capacity. HCC is resistant to conventional chemotherapy, and in the past, there have been no definite and effective systemic therapeutic drugs. Fortunately, over the last decade, the research and development of molecular targeted therapy and immunotherapy drugs for HCC have made rapid progress, and a variety of drugs and combination therapy regimens have been successively approved for clinical use. However, the overall therapeutic effect is still not ideal and needs further improvement.
Fructosyl Amino Oxidase as a Therapeutic Enzyme in Age-Related Macular Degeneration
Delanghe JR, Diana Di Mavungu J, Beerens K, Himpe J, Bostan N, Speeckaert MM, Vrielinck H, Vral A, Van Den Broeke C, Huizing M and Van Aken E
Age-related macular degeneration (AMD) is an age-related disorder that is a global public health problem. The non-enzymatic Maillard reaction results in the formation of advanced glycation end products (AGEs). Accumulation of AGEs in drusen plays a key role in AMD. AGE-reducing drugs may contribute to the prevention and treatment of AGE-related disease. Fructosamine oxidase (FAOD) acts on fructosyl lysine and fructosyl valine. Based upon the published results of fructosamine 3-kinase (FN3K) and FAOD obtained in cataract and presbyopia, we studied ex vivo FAOD treatment as a non-invasive AMD therapy. On glycolaldehyde-treated porcine retinas, FAOD significantly reduced AGE autofluorescence ( = 0.001). FAOD treatment results in a breakdown of AGEs, as evidenced using UV fluorescence, near-infrared microspectroscopy on stained tissue sections of human retina, and gel permeation chromatography. Drusen are accumulations of AGEs that build up between Bruch's membrane and the retinal pigment epithelium. On microscopy slides of human retina affected by AMD, a significant reduction in drusen surface to 45 ± 21% was observed following FAOD treatment. Enzymatic digestion followed by mass spectrometry of fructose- and glucose-based AGEs (produced in vitro) revealed a broader spectrum of substrates for FAOD, as compared to FN3K, including the following: fructosyllysine, carboxymethyllysine, carboxyethyllysine, and imidazolone. In contrast to FN3K digestion, agmatine (4-aminobutyl-guanidine) was formed following FAOD treatment in vitro. The present study highlights the therapeutic potential of FAOD in AMD by repairing glycation-induced damage.
Glycosylation and Characterization of Human Transferrin in an End-Stage Kidney Disease
Miljuš G, Penezić A, Pažitná L, Gligorijević N, Baralić M, Vilotić A, Šunderić M, Robajac D, Dobrijević Z, Katrlík J and Nedić O
Chronic kidney disease (CKD) is a global health concern affecting approximately one billion individuals worldwide. End-stage kidney disease (ESKD), the most severe form of CKD, is often accompanied by anemia. Peritoneal dialysis (PD), a common treatment for ESKD, utilizes the peritoneum for solute transfer but is associated with complications including protein loss, including transferrin (Tf) a key protein involved in iron transport. This study investigated Tf characteristics in ESKD patients compared to healthy individuals using lectin microarray, spectroscopic techniques and immunocytochemical analysis to assess Tf interaction with transferrin receptors (TfRs). ESKD patients exhibited altered Tf glycosylation patterns, evidenced by significant changes in lectin reactivity compared to healthy controls. However, structural analyses revealed no significant differences in the Tf secondary or tertiary structures between the two groups. A functional analysis demonstrated comparable Tf-TfR interaction in both PD and healthy samples. Despite significant alterations in Tf glycosylation, structural integrity and Tf-TfR interaction remained preserved in PD patients. These findings suggest that while glycosylation changes may influence iron metabolism, they do not impair Tf function. The study highlights the importance of a glucose-free dialysis solutions in managing anemia exacerbation in PD patients with poorly controlled anemia, potentially offering a targeted therapeutic approach to improve patient outcomes.
The Role of Phospholipid Alterations in Mitochondrial and Brain Dysfunction after Cardiac Arrest
Choudhary RC, Kuschner CE, Kazmi J, Mcdevitt L, Espin BB, Essaihi M, Nishikimi M, Becker LB and Kim J
The human brain possesses three predominate phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), which account for approximately 35-40%, 35-40%, and 20% of the brain's phospholipids, respectively. Mitochondrial membranes are relatively diverse, containing the aforementioned PC, PE, and PS, as well as phosphatidylinositol (PI) and phosphatidic acid (PA); however, cardiolipin (CL) and phosphatidylglycerol (PG) are exclusively present in mitochondrial membranes. These phospholipid interactions play an essential role in mitochondrial fusion and fission dynamics, leading to the maintenance of mitochondrial structural and signaling pathways. The essential nature of these phospholipids is demonstrated through the inability of mitochondria to tolerate alteration in these specific phospholipids, with changes leading to mitochondrial damage resulting in neural degeneration. This review will emphasize how the structure of phospholipids relates to their physiologic function, how their metabolism facilitates signaling, and the role of organ- and mitochondria-specific phospholipid compositions. Finally, we will discuss the effects of global ischemia and reperfusion on organ- and mitochondria-specific phospholipids alongside the novel therapeutics that may protect against injury.
The Impact of the Aryl Hydrocarbon Receptor on Antenatal Chemical Exposure-Induced Cardiovascular-Kidney-Metabolic Programming
Tain YL and Hsu CN
Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.
Podophyllic Aldehyde, a Podophyllotoxin Derivate, Elicits Different Cell Cycle Profiles Depending on the Tumor Cell Line: A Systematic Proteomic Analysis
Hernández ÁP, Chaparro-González L, Garzo-Sánchez O, Arias-Hidalgo C, Juanes-Velasco P, García PA, Castro MÁ and Fuentes M
When new antitumor therapy drugs are discovered, it is essential to address new target molecules from the point of view of chemical structure and to carry out efficient and systematic evaluation. In the case of natural products and derived compounds, it is of special importance to investigate chemomodulation to further explore antitumoral pharmacological activities. In this work, the compound podophyllic aldehyde, a cyclolignan derived from the chemomodulation of the natural product podophyllotoxin, has been evaluated for its viability, influence on the cell cycle, and effects on intracellular signaling. We used functional proteomics characterization for the evaluation. Compared with the FDA-approved drug etoposide (another podophyllotoxin derivative), we found interesting results regarding the cytotoxicity of podophyllic aldehyde. In addition, we were able to observe the effect of mitotic arrest in the treated cells. The use of podophyllic aldehyde resulted in increased cytotoxicity in solid tumor cell lines, compared to etoposide, and blocked the cycle more successfully than etoposide. High-throughput analysis of the deregulated proteins revealed a selective antimitotic mechanism of action of podophyllic aldehyde in the HT-29 cell line, in contrast with other solid and hematological tumor lines. Also, the apoptotic profile of podophyllic aldehyde was deciphered. The cell death mechanism is activated independently of the cell cycle profile. The results of these targeted analyses have also shown a significant response to the signaling of kinases, key proteins involved in signaling cascades for cell proliferation or metastasis. Thanks to this comprehensive analysis of podophyllic aldehyde, remarkable cytotoxic, antimitotic, and other antitumoral features have been discovered that will repurpose this compound for further chemical transformations and antitumoral analysis.
Application of copper (I) selective ligands for PET imaging of reactive oxygen species through metabolic trapping
Tada T, Mizuno Y, Shibata Y, Yasui H and Kuge Y
Reactive oxygen species (ROS) are attractive targets for clinical PET imaging. In this study, we hypothesized that PET imaging of ROS would be possible by using chelating ligands (L) that form stable complexes with copper (I) but not with copper (II), based on metabolic trapping. Namely, when [Cu][Cu(L)] is oxidized by ROS, the oxidized complex will release [Cu]Cu. Then, the released [Cu]Cu will be trapped inside the cell, resulting in PET signal depending on the redox potential of ROS. To examine the potential of this novel molecular design for ROS imaging, we synthesized copper (I) complexes with bicinchoninic acid (BCA) disodium salt and bathocuproinedisulfonic acid (BCS) disodium salt and evaluated their reactivity with several kinds of ROS. In addition, the cellular uptake of [Cu][Cu(BCS)] and the stability of [Cu][Cu(BCS)] in a biological condition were also evaluated.
Biological Roles and Clinical Applications of Exosomes in Breast Cancer: A Brief Review
Wang H, Wang R, Shen K, Huang R and Wang Z
Breast cancer (BC) is a global health risk for women and has a high prevalence rate. The drug resistance, recurrence, and metastasis of BC affect patient prognosis, thus posing a challenge to scientists. Exosomes are extracellular vesicles (EVs) that originate from various cells; they have a double-layered lipid membrane structure and contain rich biological information. They mediate intercellular communication and have pivotal roles in tumor development, progression, and metastasis and drug resistance. Exosomes are important cell communication mediators in the tumor microenvironment (TME). Exosomes are utilized as diagnostic and prognostic biomarkers for estimating the treatment efficacy of BC and have the potential to function as tools to enable the targeted delivery of antitumor drugs. This review introduces recent progress in research on how exosomes influence tumor development and the TME. We also present the research progress on the application of exosomes as prognostic and diagnostic biomarkers and drug delivery tools.
Prediction Model of Coal Gas Permeability Based on Improved DBO Optimized BP Neural Network
Wang W, Cui X, Qi Y, Xue K, Liang R and Bai C
Accurate measurement of coal gas permeability helps prevent coal gas safety accidents effectively. To predict permeability more accurately, we propose the IDBO-BPNN coal body gas permeability prediction model. This model combines the Improved Dung Beetle algorithm (IDBO) with the BP neural network (BPNN). First, the Sine chaotic mapping, Osprey optimization algorithm, and adaptive T-distribution dynamic selection strategy are integrated to enhance the DBO algorithm and improve its global search capability. Then, IDBO is utilized to optimize the weights and thresholds in BPNN to enhance its prediction accuracy and mitigate the risk of overfitting to some extent. Secondly, based on the influencing factors of gas permeability, effective stress, gas pressure, temperature, and compressive strength, they are chosen as the coupling indicators. The SPSS 27 software is used to analyze the correlation among the indicators using the Pearson correlation coefficient matrix. Additionally, the Kernel Principal Component Analysis (KPCA) is employed to extract the original data. Then, the original data is divided into principal component data for the model input. The prediction results of the IDBO-BPNN model are compared with those of the PSO-BPNN, PSO-LSSVM, PSO-SVM, MPA-BPNN, WOA-SVM, BES-SVM, and DPO-BPNN models. This comparison assesses the capability of KPCA to enhance the accuracy of model predictions and the performance of the IDBO-BPNN model. Finally, the IDBO-BPNN model is tested using data from a coal mine in Shanxi. The results indicate that the predicted outcome closely aligns with the actual value, confirming the reliability and stability of the model. Therefore, the IDBO-BPNN model is better suited for predicting coal gas permeability in academic research writing.
Development of a Unified IoT Platform for Assessing Meteorological and Air Quality Data in a Tropical Environment
Kairuz-Cabrera D, Hernandez-Rodriguez V, Schalm O, Martinez A, Laso PM and Alejo-Sánchez D
In developing nations, outdated technologies and sulfur-rich heavy fossil fuel usage are major contributors to air pollution, affecting urban air quality and public health. In addition, the limited resources hinder the adoption of advanced monitoring systems crucial for informed public health policies. This study addresses this challenge by introducing an affordable internet of things (IoT) monitoring system capable of tracking atmospheric pollutants and meteorological parameters. The IoT platform combines a Bresser 5-in-1 weather station with a previously developed air quality monitoring device equipped with Alphasense gas sensors. Utilizing MQTT, Node-RED, InfluxDB, and Grafana, a Raspberry Pi collects, processes, and visualizes the data it receives from the measuring device by LoRa. To validate system performance, a 15-day field campaign was conducted in Santa Clara, Cuba, using a Libelium Smart Environment Pro as a reference. The system, with a development cost several times lower than Libelium and measuring a greater number of variables, provided reliable data to address air quality issues and support health-related decision making, overcoming resource and budget constraints. The results showed that the IoT architecture has the capacity to process measurements in tropical conditions. The meteorological data provide deeper insights into events of poorer air quality.
A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections
Lai K, Wang X and Cao C
Arterial blood pressure (ABP) serves as a pivotal clinical metric in cardiovascular health assessments, with the precise forecasting of continuous blood pressure assuming a critical role in both preventing and treating cardiovascular diseases. This study proposes a novel continuous non-invasive blood pressure prediction model, DSRUnet, based on deep sparse residual U-net combined with improved SE skip connections, which aim to enhance the accuracy of using photoplethysmography (PPG) signals for continuous blood pressure prediction. The model first introduces a sparse residual connection approach for path contraction and expansion, facilitating richer information fusion and feature expansion to better capture subtle variations in the original PPG signals, thereby enhancing the network's representational capacity and predictive performance and mitigating potential degradation in the network performance. Furthermore, an enhanced SE-GRU module was embedded in the skip connections to model and weight global information using an attention mechanism, capturing the temporal features of the PPG pulse signals through GRU layers to improve the quality of the transferred feature information and reduce redundant feature learning. Finally, a deep supervision mechanism was incorporated into the decoder module to guide the lower-level network to learn effective feature representations, alleviating the problem of gradient vanishing and facilitating effective training of the network. The proposed DSRUnet model was trained and tested on the publicly available UCI-BP dataset, with the average absolute errors for predicting systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) being 3.36 ± 6.61 mmHg, 2.35 ± 4.54 mmHg, and 2.21 ± 4.36 mmHg, respectively, meeting the standards set by the Association for the Advancement of Medical Instrumentation (AAMI), and achieving Grade A according to the British Hypertension Society (BHS) Standard for SBP and DBP predictions. Through ablation experiments and comparisons with other state-of-the-art methods, the effectiveness of DSRUnet in blood pressure prediction tasks, particularly for SBP, which generally yields poor prediction results, was significantly higher. The experimental results demonstrate that the DSRUnet model can accurately utilize PPG signals for real-time continuous blood pressure prediction and obtain high-quality and high-precision blood pressure prediction waveforms. Due to its non-invasiveness, continuity, and clinical relevance, the model may have significant implications for clinical applications in hospitals and research on wearable devices in daily life.
Steady-State Delivery and Chemical Modification of Food Nutrients to Improve Cancer Intervention Ability
Hao S, Ge P, Su W, Wang Y, Abd El-Aty AM and Tan M
Cancer is a crucial global health problem, and prevention is an important strategy to reduce the burden of the disease. Daily diet is the key modifiable risk factor for cancer, and an increasing body of evidence suggests that specific nutrients in foods may have a preventive effect against cancer. This review summarizes the current evidence on the role of nutrients from foods in cancer intervention. It discusses the potential mechanisms of action of various dietary components, including phytochemicals, vitamins, minerals, and fiber. The findings of epidemiological and clinical studies on their association with cancer risk are highlighted. The foods are rich in bioactive compounds such as carotenoids, flavonoids, and -3 fatty acids, which have been proven to have anticancer properties. The effects of steady-state delivery and chemical modification of these food's bioactive components on anticancer and intervention are summarized. Future research should focus on identifying the specific bioactive compounds in foods responsible for their intervention effects and exploring the potential synergistic effects of combining different nutrients in foods. Dietary interventions that incorporate multiple nutrients and whole foods may hold promise for reducing the risk of cancer and improving overall health.
Associations between sleep duration trajectories and cognitive decline: A longitudinal cohort study in China
Wang X, Luo L, Zhao J, Guo X, Tao L, Zhang F, Liu X, Gao B and Luo Y
The relationship between sleep duration trajectories and cognitive decline remains uncertain. This study aims to examine the connections between various patterns of sleep duration and cognitive function.
close chatgpt icon
ChatGPT

Enter your request.