Welcome to PsychiatryAI.com: [PubMed] - Psychiatry AI Latest

Revealing Individual Neuroanatomical Heterogeneity in Alzheimer Disease Using Neuroanatomical Normative Modeling

Evidence

Neurology. 2023 May 1:10.1212/WNL.0000000000207298. doi: 10.1212/WNL.0000000000207298. Online ahead of print.

ABSTRACT

BACKGROUND AND OBJECTIVES: Alzheimer’s Disease (AD) is highly heterogeneous, with marked individual differences in clinical presentation and neurobiology. To explore this, we employed neuroanatomical normative modelling to index regional patterns of variability in cortical thickness. We aimed to characterise individual differences and outliers in cortical thickness in patients with AD, people with mild cognitive impairment (MCI) and controls. Furthermore, we assessed the relationships between cortical thickness heterogeneity and cognitive function, amyloid-beta, phosphor-tau, ApoE genotype. Finally, we examined whether cortical thickness heterogeneity was predictive of conversion from MCI to AD.

METHODS: Cortical thickness measurements across 148 brain regions were obtained from T1-weighted MRI scans from 62 sites of the Alzheimer’s Disease Neuroimaging Initiative. AD was determined by clinical and neuropsychological examination with no comorbidities present. MCI participants had reported memory complaints, and controls were cognitively normal. A neuroanatomical normative model indexed cortical thickness distributions using a separate healthy reference dataset (n= 33,072), employing hierarchical Bayesian regression to predict cortical thickness per region using age and sex, whilst adjusting for site noise. Z-scores per region were calculated, resulting in a z-score ‘brain map’ per participant. Regions with z-scores <-1.96 were classified as outliers.

RESULTS: Patients with AD (n=206) had a median of 12 outlier regions (out of a possible 148), with the highest proportion of outliers (47%) in the parahippocampal gyrus. For 62 regions, over 90% of these patients had cortical thicknesses within the normal range. Patients with AD had more outlier regions than people with MCI (n=662) or controls (n=159) [F(2, 1022) = 95.39), P = 2.0×10-16]. They were also more dissimilar to each other than people with MCI or controls [F(2, 1024) = 209.42, P = 2.2×10-16]. A greater number of outlier regions was associated with worse cognitive function, CSF protein concentrations and an increased risk of converting from MCI to AD within three years (HR = 1.028, 95% CI[1.016,1.039], P =1.8×10-16).

DISCUSSION: Individualised normative maps of cortical thickness highlight the heterogeneous impact of AD on the brain. Regional outlier estimates have the potential to be a marker of disease and could be used to track an individual’s disease progression or treatment response in clinical trials.

PMID:37127353 | DOI:10.1212/WNL.0000000000207298

Document this CPD Copy URL Button

Google

Google Keep Add to Google Keep

LinkedIn Share Share on Linkedin Share on Linkedin

Estimated reading time: 6 minute(s)

Latest: Psychiatryai.com #RAISR4D

Cool Evidence: Engaging Young People and Students in Real-World Evidence ☀️

Real-Time Evidence Search [Psychiatry]

AI Research [Andisearch.com]

Revealing Individual Neuroanatomical Heterogeneity in Alzheimer Disease Using Neuroanatomical Normative Modeling

Copy WordPress Title

🌐 90 Days

Evidence Blueprint

Revealing Individual Neuroanatomical Heterogeneity in Alzheimer Disease Using Neuroanatomical Normative Modeling

QR Code

☊ AI-Driven Related Evidence Nodes

(recent articles with at least 5 words in title)

More Evidence

Revealing Individual Neuroanatomical Heterogeneity in Alzheimer Disease Using Neuroanatomical Normative Modeling

🌐 365 Days

Floating Tab
close chatgpt icon
ChatGPT

Enter your request.

Psychiatry AI RAISR 4D System Psychiatry + Mental Health